如何在监控区识别正在吸烟,并推送相关信息给到吸烟者并罚款

你好,这是Bing。根据网络搜索结果123,要在监控区识别人正在吸烟的行为,需要用到以下几个步骤:

  • 首先检测场景中的人,然后将检测到的人截取出来分别送入姿态检测模块和烟头检测模块。
  • 随后对手、嘴唇、烟的位置关系进行判断,确定是否正在抽烟。
  • 最后判断是在抽烟会进行预警,并推送相关信息给到吸烟者并根据情节严重罚款。

要编写python代码实现这个功能,你可能需要用到一些图像处理和机器学习的库,比如opencv、tensorflow、pytorch等。你可以参考一些开源的项目或教程来学习如何使用这些库。例如:

# 导入所需的库
import cv2
import numpy as np
import tensorflow as tf

# 加载预训练的模型
person_detector = tf.keras.models.load_model('person_detector.h5')
pose_estimator = tf.keras.models.load_model('pose_estimator.h5')
smoke_detector = tf.keras.models.load_model('smoke_detector.h5')

# 打开摄像头或视频文件
cap = cv2.VideoCapture(0)

# 循环处理每一帧图像
while True:
    # 读取一帧图像
    ret, frame = cap.read()
    if not ret:
        break
    
    # 检测场景中的人
    person_boxes = person_detector.predict(frame)
    
    # 对每一个人进行处理
    for person_box in person_boxes:
        # 截取人的图像
        x1, y1, x2, y2 = person_box.astype(int)
        person_img = frame[y1:y2, x1:x2]
        
        # 估计人的姿态
        pose_keypoints = pose_estimator.predict(person_img)
        
        # 检测烟头
        smoke_boxes = smoke_detector.predict(person_img)
        
        # 判断是否正在抽烟
        is_smoking = False
        
        # 如果有检测到烟头,进一步判断手、嘴唇、烟的位置关系
        if len(smoke_boxes) > 0:
            # 获取手部和嘴唇的关键点坐标
            hand_keypoints = pose_keypoints[[4, 7]] # 左右手腕点索引为4和7 
            mouth_keypoint = pose_keypoints[0] # 嘴巴点索引为0
            
            # 对每一个烟头进行处理
            for smoke_box in smoke_boxes:
                # 获取烟头的中心坐标
                sx1, sy1, sx2, sy2 = smoke_box.astype(int)
                smoke_center_x = (sx1 + sx2) / 2 
                smoke_center_y = (sy1 + sy2) / 2
                
                # 计算手部和嘴唇与烟头中心的距离(欧氏距离)
                hand_distances = np.sqrt(np.sum((hand_keypoints - [smoke_center_x, smoke_center_y]) ** 2, axis=1))
                mouth_distance = np.sqrt(np.sum((mouth_keypoint - [smoke_center_x, smoke_center_y]) ** 2))
                
                # 如果有任意一只手与烟头中心距离小于阈值,并且嘴唇与烟头中心距离小于阈值,则认为正在抽烟,并结束循环(假设每次只有一个人在抽)
                if np.any(hand_distances < 20) and mouth_distance < 20: 
                    is_smoking =is_smoking = True
                    break
        
        # 如果判断为正在抽烟,进行预警,并推送相关信息给到吸烟者并根据情节严重罚款
        if is_smoking:
            # 在原图上画出人和烟头的边框,并标注“吸烟”字样
            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2) # 红色边框表示人
            cv2.rectangle(frame, (sx1, sy1), (sx2, sy2), (255, 0, 0), 2) # 蓝色边框表示烟头
            cv2.putText(frame, 'Smoking', (x1 + 10, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX , 1.0 , (0 , 0 , 255) , 2) # 红色字体表示“吸烟”
            
            # 获取人脸的图像(假设已经有一个人脸检测模型)
            face_box = face_detector.predict(person_img)
            fx1, fy1, fx2, fy2 = face_box.astype(int)
            face_img = person_img[fy1:fy2, fx1:fx2]
            
            # 将人脸图像转换为base64编码(方便传输)
            face_img = cv2.imencode('.jpg', face_img)[1]
            face_base64 = base64.b64encode(face_img)
            
            # 构造要推送的信息(包括人脸图像、时间、地点、罚款金额等)
            message = {
                'face': face_base64,
                'time': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
                'location': '监控区',
                'fine': '100元'
            }
            
            # 将信息发送给吸烟者(假设已经有一个推送服务)
            push_service.send(message)
    
    # 显示处理后的图像
    cv2.imshow('frame', frame)
    
    # 按q键退出循环
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 关闭摄像头或视频文件
cap.release()

# 关闭窗口
cv2.destroyAllWindows()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值