中医把脉诊断开药在AI下的发展
随着大数据、人工智能等新技术的飞速发展,"AI+中医药"的融合程度越来越深,应用场景也越来越多元。在浙江中医诊疗机构中,通过大数据、AI算法、云计算、大模型等技术孵化训练出来的数字孪生机器人已成为一个个“靠谱”的“名老中医”,它们能够数字抄方系统梳理,复刻“名医大脑”妙手开药,并实现智能带教,将名老中医临床经验活态传承,推动中医药由经验医学走向循证医学。
华为推出了名为“神农大脑”的大模型,这是一套集成了中医药知识图谱、智能诊断、药物推荐等功能的系统。通过大数据和人工智能技术,整合中医药知识而形成,模型加入了《黄帝内经》、《本草纲目》、《伤寒杂病论》等数万份中医典籍、方剂、病例文本数据,经过深度学习形成对中医药知识的理解。它能够通过大数据分析,帮助医生更准确诊断疾病,为患者提供个性化治疗方案,仅需10秒就能诊断开药。
此外,华为还与云南白药等知名企业合作,一起把控中药质量,并成立了中医联盟,共同推进中医药的发展。这些进展表明,AI技术在中医诊断和治疗中的应用正在加速,有望为中医药的现代化和国际化发展带来新的突破。
深入研究
中医数字化转型中,AI技术如何辅助提高中医诊断的准确性?
AI技术在中医诊断中的应用
AI技术在中医诊断中的应用主要集中在以下几个方面:
1.数据采集与分析:AI技术能够通过高清摄像头捕捉舌象、面色,结合声音识别技术分析患者语音特征,辅以智能化的电子问卷系统完成“问诊”,并通过可穿戴设备监测脉搏等生理指标,全面实现望、闻、问、切四诊的数字化、智能化采集。
2.知识图谱构建:基于海量中医临床案例与经典医籍,构建包含病症、体质、方剂、药材等的中医知识图谱,为AI算法提供坚实的理论基础和丰富的数据支持。
3.AI辨证施治模型:运用深度学习、机器学习算法,对采集的四诊信息进行综合分析,模拟中医专家的辨证逻辑,识别体质类型、辨明证候,从而生成个性化的诊疗方案,包括中药处方、针灸、拔罐、食疗建议等。
4.个性化健康管理计划:根据患者的体质和健康状况,智能推荐日常饮食、运动、作息等个性化调养方案,促进疾病预防和健康管理。
5.持续学习与优化:系统内置反馈机制,根据临床应用效果和专家评价,不断优化诊断模型,提高诊疗准确性和有效性。
6.用户交互体验:设计简洁易用的用户界面,确保各年龄层用户都能轻松操作,同时通过语音交互、动画演示等增强用户体验。
7.隐私保护与数据安全:严格遵守医疗数据保护法规,采用高级加密技术保护用户隐私,确保数据传输与存储安全。
通过上述应用,AI技术不仅能够提升中医诊疗的效率与精准度,还能促进中医的现代化与国际化,为全球健康事业贡献中医智慧。
目前存在哪些挑战和障碍限制了AI在中医领域的广泛应用?
AI在中医领域的应用挑战
AI在中医领域的应用面临多方面的挑战,其中包括:
1.数据质量和数量问题:中医诊断的个性化、经验性和主观性导致公开可用的中医相关数据集较少,这直接限制了智能辨证模型的训练和验证。
2.缺乏用户思维:目前开发的中医AI往往基于中医人自身的技术或经验,而没有充分考虑用户需求,导致产品难以满足市场需求。
3.封闭性问题:一些中医AI开发机构在开发过程中缺乏开放性,没有让临床医生参与验证、优化、迭代AI技术,导致AI技术与临床实践脱节。
4.缺乏真实有效的临床数据:由于严重缺乏真实有效的中医临床数据,开发中医AI不得不依赖于中医书籍和医案,这限制了AI技术的实用性和准确性。
5.中医高手的参与度低:大多数中医临床高手没有参与到AI的开发和验证中,这增加了AI开发的难度。
6.中医连锁机构的支持不足:现有的中医连锁机构规模小,资本实力和临床数据不足以支撑AI的开发。
7.标准化和理论基础的挑战:中医理论体系复杂,中药质量控制难度高,中药及方剂的药理机制基础研究不足,这些都是AI在中医领域应用的难点。
8.模型可解释性问题:AI模型在中医领域的应用需要解释其决策过程,但目前的模型往往是"黑箱",难以解释其内部逻辑。
综上所述,AI在中医领域的应用虽然具有巨大潜力,但要克服上述挑战,需要跨学科合作、政策支持和持续的研究投入。
未来中医与AI结合有哪些潜在的发展方向?
中医与AI结合的潜在发展方向
随着人工智能技术的不断进步,中医与AI的结合正在开辟出新的发展路径。以下是一些潜在的发展方向:
1.智能化诊断与治疗:AI技术可以通过大数据分析和机器学习,对中医药的诊疗过程进行智能化处理,提高诊疗的准确性和效率。例如,AI可以辅助医生进行舌诊、脉诊等中医特有的诊断方法,通过图像识别和数据分析,提供更加客观的诊断依据。
2.中医知识的数字化与标准化:AI技术可以帮助实现海量古籍文献和临床诊治经验的结构化、科学化表达,帮助中医诊疗建立客观化标准与评价体系。
3.中医教育与科研的创新:AI技术可以作为教学助手,帮助学生理解和记忆中医理论,同时支持学者进行大数据驱动的中医科学研究,挖掘新知。
4.中医健康管理的个性化服务:AI技术可以结合用户的体质特点、生活习惯等数据,提供定制化的中药处方、针灸方案或养生建议。
5.中医国际化的推进:AI技术的跨语言交流能力有助于中医知识的全球传播,推动中医走向世界。
6.中医科研与教育的辅助工具:AI技术产生的大量病例数据,为中医临床研究提供了宝贵的资源,有助于揭示疾病规律,推动中医理论创新。
7.中医现代化的深化:AI技术的应用不仅有利于更好地揭示中医药的科学价值,也有利于加快培育中医药新质生产力,进一步拓展中医药创新链、产业链、价值链。
这些发展方向展示了中医与AI结合的广阔前景,预计将在未来的医疗领域中发挥重要作用。
参考:
[1]:https://www.takungpao.com/news/232108/2024/0423/964633.html
[2]:https://blog.csdn.net/weixin_50615370/article/details/135120236
[3]:https://www.thepaper.cn/newsDetail_forward_27619753
[4]:https://www.163.com/dy/article/J3FAETVS05149878.html
[5]:https://www.sohu.com/a/790756942_120869996/
[6]:https://health.baidu.com/m/detail/ar_2633605880559071759
[7]:http://zl.39.net/a/240312/l1ngzfy.html
[8]:https://askar.39.net/ask/jkkpzx/o81x2bfx1.html
[9]:https://cm.39.net/a/230820/j6dbe0m.html
[10]:http://zl.39.net/a/240309/z6ndfnx.html
[11]:http://www.360doc.com/content/24/0507/13/7288840_1122602741.shtml
[12]:https://www.hntv.tv/rhh-9678793728/article/1/1766462490412793858
[13]:https://www.zhihu.com/question/429533730
[14]:https://mp.weixin.qq.com/s?__biz=MzA4NzA1NjQwNg==&mid=2656998668&idx=1&sn=ae587742ea93366f5c45e510f03335a8&chksm=8b957c75bce2f563621f78405f9c54a9c1369a5f871da83b1792c5ea6da3ab74b4b52bcd788f&scene=27
[15]:https://baijiahao.baidu.com/s?id=1791304717786623952
[16]:http://www.cn-witmed.com/list/39/8785.html
[17]:https://www.sohu.com/a/774141680_267106/
[18]:https://www.sohu.com/a/790711550_537696/
[19]:https://www.sohu.com/a/790686769_120014250/
[20]:https://baijiahao.baidu.com/s?id=1797549090093626415
[21]:https://wenku.baidu.com/view/bdfad892a000a6c30c22590102020740bf1ecd70.html
[22]:https://cloud.tencent.com/developer/news/1357184
[23]:https://wenku.baidu.com/view/31c05dfbbb4ae45c3b3567ec102de2bd9705de3d.html
[24]:https://www.toutiao.com/article/7348982694333776394/
[25]:https://www.sohu.com/a/789221278_121894856/
[26]:https://m.36kr.com/p/2551351668595075
[27]:http://www.jjckb.cn/2023-05/24/c_1310721232.htm
[28]:https://baijiahao.baidu.com/s?id=1800301812174119943
[29]:https://baijiahao.baidu.com/s?id=1799267112078877615
[30]:https://www.sohu.com/a/790915136_537696/
[31]:https://www.sohu.com/a/771120478_121894856
[32]:https://baijiahao.baidu.com/s?id=1799628491323116702
[33]:https://baijiahao.baidu.com/s?id=1798363177007047559
[34]:https://www.thepaper.cn/newsDetail_forward_27099600
[35]:http://www.engineering.org.cn/default/journalDetails/download?key=http://devp-service.oss-cn-beijing.aliyuncs.com/6dc196b3e0b911ecbddc506b4b3f16ce/file_1716291153107.pdf&title=10.15302-J-SSCAE-2024.02.010
[36]:https://zhuanlan.zhihu.com/p/683786334
[37]:http://www.liangyihui.net/doc/121111
[38]:https://mp.weixin.qq.com/s?__biz=MzA3MTUwNjU3NQ==&idx=1&mid=2651076003&scene=27&sn=60b97411326175841386c5f943af0b19
[39]:https://www.engineering.org.cn/ch/article/37605/
[40]:http://www.sinomed.ac.cn/article.do?ui=2020181655
[41]:https://d.wanfangdata.com.cn/periodical/zgzyjcyx202403010
[42]:https://journal.hep.com.cn/sscae/CN/10.15302/J-SSCAE-2024.02.010
[43]:https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201902002.htm
[44]:https://static.nfapp.southcn.com/content/202311/04/c8264799.html
[45]:https://m.book118.com/html/2024/0526/6123121052010135.shtm
[46]:https://3g.163.com/news/article/J1MG8KL00550HKM7.html
[47]:http://www.xinhuanet.com/tech/20230419/2d2d5b7086764fd4a9c5626048aebdd6/c.html
[48]:https://baijiahao.baidu.com/s?id=1800127144196864034
[49]:http://health.people.com.cn/n1/2024/0517/c14739-40237812.html
[50]:https://finance.sina.com.cn/jjxw/2024-05-10/doc-inauuifc1600069.shtml
[51]:https://baijiahao.baidu.com/s?id=1797355685417544358
[52]:https://baijiahao.baidu.com/s?id=1798917949956491927
[53]:https://zhuanlan.zhihu.com/p/608727087
[54]:https://baijiahao.baidu.com/s?id=1797270445173985214
[55]:https://zhuanlan.zhihu.com/p/624622493
[56]:https://baijiahao.baidu.com/s?id=1796001720568714548