李飞飞带领的 simplescaling 开源 s1.1 CoT模型(3B、7B、14B和32B)

测试时间扩展是一种很有前途的语言建模新方法,它利用额外的测试时间计算来提高性能。最近,OpenAI 的 o1 模型展示了这一能力,但并未公开分享其方法,这导致了许多复制工作。我们寻求最简单的方法来实现测试时间扩展和强大的推理性能。首先,我们策划了一个由 1000 个问题组成的小型数据集 s1K,并根据我们通过消融验证的三个标准(难度、多样性和质量)对推理轨迹进行配对。其次,我们开发了预算强制功能,通过强制终止模型的思考过程或在模型生成时多次附加 "等待 "来延长思考过程,从而控制测试时间的计算。这会导致模型反复检查其答案,往往会修正错误的推理步骤。在对 s1K 上的 Qwen2.5-32B-Instruct 语言模型进行监督微调并为其配备预算强制后,我们的模型 s1-32B 在竞赛数学问题上的表现比 o1-preview 高出 27%(MATH 和 AIME24)。此外,利用预算强制对 s1-32B 进行扩展,还可以在没有测试时间干预的情况下推断出更高的性能:在 AIME24 上从 50%提高到 57%。我们的模型、数据和代码在以下 https 网址开源

simplescaling/s1.1-3B

Qwen/Qwen2.5-3B-在 s1K-1.1 上进行微调。未经评估。建议使用 s1.1-32B。

环境:Colab T4

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

model_name = "simplescaling/s1.1-3B"

# quant_config = BitsAndBytesConfig(
#     load_in_4bit=True,
#     bnb_4bit_use_double_quant=True,
# )

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    # quantization_config=quant_config,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Please reason step by step, and put your final answer within \\boxed{}. Solve the integral:  \[I = \int \frac{x^2}{(x+1)^3} \,dx\]"
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=4000
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

print(response)

Output:

think
Okay, so I need to solve this integral: ∫ [x2 / (x+1)3] dx. Hmm, let's see. The integral looks a bit complicated with that x2 in the numerator and the denominator being (x+1) cubed. Maybe I can use substitution or integration by parts? Let me think.

First, maybe I should try substitution. Let me see if letting u = x + 1 might simplify things. If I set u = x + 1, then du = dx, and x = u - 1. So substituting into the integral:

∫ [(u - 1)2 / u3] du. Expanding the numerator: (u2 - 2u + 1)/u3. Then splitting it into three terms over u3: u2/u3 - 2u/u3 + 1/u3. Simplifying each term: 1/u - 2/u2 + 1/u3. So the integral becomes ∫ [1/u - 2/u2 + 1/u3] du. Which is ∫ 1/u du - 2∫ 1/u2 du + ∫ 1/u3 du. These are standard integrals. The antiderivatives are ln|u|, 2/u, and -1/(2u2), right? So putting it all together:

ln|u| - 2*(2/u) + (-1/(2u2)) + C. Wait, wait, no. Hold on, when you integrate 1/u2, it's -1/u + C, not 2/u. Wait, actually, integrating 1/u^n du is (-1/(n-1)u^{n-1}) + C. So for n=2, it's -1/(2-1)u^{2-1} = -1/u. Similarly, for n=3, it's -1/(3-1)u^{3-1} = -1/2u2. So yeah, that's correct.

So plugging back in, after substitution:

ln|u| - 2*(-1/u) + (-1/(2u2)) + C. Simplify that. ln|u| + 2/u - 1/(2u2) + C. But since u = x + 1, which is just a variable, absolute value isn't necessary unless there's a concern about the domain. Since x is probably real, x+1 could be positive or negative, but perhaps we can write it as ln(u) + 2/(u) - 1/(2u2) + C. Alternatively, maybe combine the terms into a single fraction?

Alternatively, maybe I didn't substitute correctly. Let me check again. Original substitution was u = x + 1, so x = u - 1. Then x2 becomes (u - 1)^2. So yes, expanding (u - 1)^2 over u3 gives (u2 - 2u + 1)/u3, which splits into 1/u - 2/u2 + 1/u3. Then integrating each term separately. That seems okay.

But maybe another approach? Integration by parts? Hmm, the integral has a polynomial in the numerator and a power function in the denominator. Maybe rewrite the numerator as something like (x+1 -1)^2 or similar. Let me try that.

Wait, the original integral is ∫ [x2 / (x+1)^3] dx. Let me see if I can write x2 as (x+1 -1)^2 or something. Let’s expand (x+1 -1)^2: (x+1)^2 - 2(x+1)(1) +1^2 = x2 + 2x +1 - 2x - 2 +1 = x2 -0x -0 +1 -2 +1 = x2 -0x +0? Wait, hold on:

(x+1 -1)^2 = (x+1)^2 - 2*(x+1)*1 +12 = x2 + 2x +1 - 2x -2 +1 = x2 -0x +0. Wait, that simplifies to x2 + 2x +1 - 2x -2 +1 = x2 + (2x -2x) + (1 -2 +1) = x2 +0x +0. Wait, that would mean x2 = (x+1 -1)^2, but when expanded, it's x2 + 2(x+1) -1. So actually, (x+1 -1)^2 = x2 + 2x +1 - 2x -2 +1 = x2 -0x +0? Wait, no, wait:

Wait, (x+1 -1)^2 = (x +1)^2 - 2*(x+1)*1 +1^2 = x2 + 2x +1 - 2x -2 +1 = x2 -0x +0. Wait, that can't be right. Let me compute it step by step.

Let me calculate (x+1 -1)^2:

First, x+1 -1 = x.

Then, x squared is x2.

So (x)^2 = x2, which is the same as the original numerator x2. So that suggests that perhaps writing x2 as (x+1 -1)^2 isn't helpful here because it just gives back x2. Maybe that approach won't work. Alternatively, perhaps write x2 as (x+1)^2 -1? Let's see.

If I write x2 = (x+1)^2 -1, then substituting into the integral:

∫ [((x+1)^2 -1)/ (x+1)^3 ] dx = ∫ [(x+1)^2 / (x+1)^3 - 1/(x+1)^3] dx = ∫ [1/(x+1) - 1/(x+1)^3] dx.

Which separates into ∫ 1/(x+1) dx - ∫ 1/(x+1)^3 dx. These are standard integrals. The first one is ln|x+1| + C, and the second one is -1/(2(x+1)^2) + C. Therefore, combining these results:

Integral becomes ln|x+1| - (-1/(2(x+1)^2)) + C = ln|x+1| + 1/(2(x+1)^2) + C.

So putting it all together, the integral ∫ [x2 / (x+1)^3] dx = ln|x+1| + 1/(2(x+1)^2) + C.

Therefore, the answer is \boxed{ \ln|x+1| + \dfrac{1}{2(x+1)^2} + C }.

Wait, but let me verify this result using differentiation. Suppose I take the derivative of ln|x+1| + 1/(2(x+1)^2). Let's compute d/dx [ln|x+1|] which is 1/(x+1). Then differentiate 1/(2(x+1)^2): chain rule. Let f(x) = 1/(2x^2), then derivative is -2/(2x^3) = -1/x3. So combined, the derivative of the whole expression is 1/(x+1) - 1/(x+1)^3, which is exactly the integrand. Yes, that checks out. So the antiderivative is correct.

Therefore, the answer is \boxed{ \ln|x+1| + \dfrac{1}{2(x+1)^2} + C }.
answer
Answer: To solve the integral \( I = \int \frac{x^2}{(x+1)^3} \, dx \), we start by making a substitution to simplify the denominator. Let \( u = x + 1 \), which implies \( x = u - 1 \) and \( dx = du \). Substituting these into the integral, we get:

\[
\int \frac{(u - 1)^2}{u^3} \, du
\]

Expanding the numerator, we have:

\[
(u - 1)^2 = u^2 - 2u + 1
\]

Thus, the integral becomes:

\[
\int \left( \frac{u^2}{u^3} - \frac{2u}{u^3} + \frac{1}{u^3} \right) du = \int \left( \frac{1}{u} - \frac{2}{u^2} + \frac{1}{u^3} \right) du
\]

Integrating each term separately, we get:

\[
\int \frac{1}{u} \, du - 2 \int \frac{1}{u^2} \, du + \int \frac{1}{u^3} \, du
\]

The antiderivatives are:

\[
\ln |u| + \frac{2}{u} - \frac{1}{2u^2} + C
\]

Substituting back \( u = x + 1 \), we obtain:

\[
\ln |x + 1| + \frac{2}{x + 1} - \frac{1}{2(x + 1)^2} + C
\]

Simplifying, we can write the final answer as:

\[
\boxed{ \ln|x+1| + \dfrac{1}{2(x+1)^2} + C }
\]
2025-03-12 04:08:31.986407: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1741752512.342859    1472 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1741752512.442409    1472 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2025-03-12 04:08:33.242217: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 AVX512F FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Downloading shards: 100%|██████████| 3/3 [01:30<00:00, 30.15s/it]
Sliding Window Attention is enabled but not implemented for `sdpa`; unexpected results may be encountered.
Loading checkpoint shards: 100%|██████████| 3/3 [01:20<00:00, 26.74s/it]

simplescaling/s1.1-7B

Qwen/Qwen2.5-7B-在 s1K-1.1 上进行微调。未经评估。建议使用 s1.1-32B。

环境:Colab T4

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

model_name = "simplescaling/s1.1-7B"

quant_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    quantization_config=quant_config,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Please reason step by step, and put your final answer within \\boxed{}. Solve the integral:  \[I = \int \frac{x^2}{(x+1)^3} \,dx\]"
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=4000
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

print(response)

Output:

think
Okay, so I need to solve this integral: ∫ x2/(x+1)3 dx. Let me see how to approach this. Hmm. Since it's an integral of a rational function, maybe I should try partial fractions or some kind of algebraic manipulation first. Let's see if polynomial division would make sense here.

Given that the degree of the numerator is less than the degree of the denominator, maybe expanding or rewriting the integrand could be useful. Alternatively, substitution? Let's think.

Wait, the denominator is (x + 1)^3. Maybe substituting u = x + 1 would be a good idea because then du = dx, but the numerator has x2. Not sure if that helps yet. Wait, if I let u = x + 1, then x = u - 1. So x2 = (u - 1)2. Let me write the integral in terms of u.

So, substituting:

∫ [ (u - 1)^2 ] / u3 du

Hmm, that might work. Expanding (u - 1)^2 gives u2 - 2u + 1. So,

∫ [ u2 - 2u + 1 ] / u3 du = ∫ [ u2/u3 - 2u/u3 + 1/u3 ] du = ∫ [ 1/u - 2/u2 + 1/u3 ] du

Oh, that seems simpler. So integrating term by term:

∫ (1/u) du = ln|u| + C

∫ (-2/u2) du = -2 ∫ u^{-2} du = -2*(-1/u) + C = 2/u + C

∫ (1/u3) du = ∫ u^{-3} du = (-1)/(2u2) + C

So combining these:

ln|u| + 2/u - 1/(2u2) + C

Since u = x + 1, substitute back:

ln|x + 1| + 2/(x + 1) - 1/(2(x + 1)2) + C

Therefore, the antiderivative is:

ln(x + 1) + 2/(x + 1) - 1/(2(x + 1)2) + C

But let me check if this is correct. Let's differentiate this result to see if we get back the original integrand.

First, derivative of ln(x + 1) is 1/(x + 1).

Derivative of 2/(x + 1) is 2*(-1)/(x + 1)^2 = -2/(x + 1)^2.

Derivative of -1/(2(x + 1)^2) is -1/(2)*(-2)/(x + 1)^3 = 1/(x + 1)^3.

Adding these up:

1/(x + 1) - 2/(x + 1)^2 + 1/(x + 1)^3

Combine terms:

Let me find a common denominator, which is (x + 1)^3.

Rewriting each term:

1/(x + 1) = (x + 1)^2 / (x + 1)^3 = (x2 + 2x + 1)/ (x + 1)^3

Wait, maybe not the best way. Let's express each term with denominator (x + 1)^3:

First term: 1/(x + 1) = (x + 1)/(x + 1)^2 = (x + 1)/(x2 + 2x + 1)

But maybe better to compute:

1/(x + 1) - 2/(x + 1)^2 + 1/(x + 1)^3

Convert to same denominator:

= [(x + 1)^2 - 2(x + 1) + 1] / (x + 1)^3

Compute numerator:

(x + 1)^2 = x2 + 2x + 1

Minus 2(x + 1) = -2x - 2

Plus 1 = x2 + 2x +1 -2x -2 +1 = x2 -2x +1 -2x -2 +1 ?

Wait wait, let me expand:

[(x + 1)^2 - 2(x + 1) + 1]

Expand (x + 1)^2: x2 + 2x + 1

Subtract 2(x + 1): -2x - 2

Add 1: +1

Combine all terms:

x2 + 2x + 1 - 2x - 2 + 1 = x2 + (2x - 2x) + (1 - 2 + 1) = x2 + 0x + 0 = x2.

So numerator is x2, denominator is (x + 1)^3.

Therefore, derivative is x2/(x + 1)^3, which matches the original integrand. Perfect! So the antiderivative is indeed ln(x + 1) + 2/(x + 1) - 1/(2(x + 1)^2) + C.

Therefore, the integral evaluates to:

\boxed{\ln(x + 1) + \dfrac{2}{x + 1} - \dfrac{1}{2(x + 1)^2} + C}

But let me verify once more. Suppose we have the original integrand x2/(x + 1)^3.

Alternatively, maybe use integration by parts. But given the time spent on substitution, that seems okay. Alternatively, polynomial long division as another method.

Alternatively, perform long division of x2 by (x + 1)^3?

Wait, actually, since the denominator is (x + 1)^3, but maybe writing x2/(x + 1)^3 directly.

But perhaps polynomial division isn't straightforward here because the denominator is a cubic. However, since the numerator is degree 2 and the denominator is degree 3, the quotient would be a constant, right? So dividing x2 by (x + 1)^3 would give a quotient of 1/(x + 1)^3 and a remainder. Wait, no. Wait, polynomial long division of x2 by (x + 1)^3 would result in a quotient of 0, since x2 divided by (x + 1)^3 would have lower degree numerator. Therefore, x2/(x + 1)^3 can be written as x2/(x + 1)^3 + 0. Not helpful. So maybe not the best approach here.

Alternatively, rewrite x2 as x2 + x - x. Wait, x2 = (x + 1)(x - 1) + 1. Wait, x2 = x(x + 1) - x + x - 1? Not quite. Let's see:

x2 = x(x + 1) - x + x - 1? No. Alternatively, x2 = (x + 1)^2 - 2(x) + 1. Wait, x2 = x(x) + x(-1) + something? Wait, maybe not helpful.

Wait, x2 = (x + 1)(x - 1) + (x + 1) + (something). Wait, x2 = x(x) + 0(x) + 1. Hmmm, maybe not.

Alternatively, x2 = x(x + 1) - x + x - 1? Wait, perhaps not.

Wait, x2 divided by x gives x, minus 1. Wait, x2 = (x + 1)x - (x + 1) + 1. Let me see:

x2 = x*(x + 1) - x + 1

Because x*(x + 1) = x2 + x

Then subtract x: x2 + x - x = x2

Then add 1: x2 + x - x + 1 = x2 + 1

Wait, so x2 = (x + 1)x - x + 1. That seems plausible.

So x2 = (x + 1)x - x + 1

Therefore, x2/(x + 1)^3 = [ (x + 1)x - x + 1 ] / (x + 1)^3

Breaking this into three terms:

( (x + 1)x ) / (x + 1)^3 - x/(x + 1)^3 + 1/(x + 1)^3

Simplify each term:

First term: (x + 1)x / (x + 1)^3 = x/(x + 1)^2

Second term: -x/(x + 1)^3

Third term: +1/(x + 1)^3

So overall:

x/(x + 1)^2 - x/(x + 1)^3 + 1/(x + 1)^3

Which can be combined as:

x/(x + 1)^2 + ( -x + 1 )/(x + 1)^3

But perhaps not particularly helpful. Then integrating term by term:

∫ [ x/(x + 1)^2 - x/(x + 1)^3 + 1/(x + 1)^3 ] dx

But integrating each part separately may lead us back to the same substitution we did before. Let me attempt that.

So integrating each term:

First term: ∫ x/(x + 1)^2 dx

Let’s use substitution for this. Let u = x + 1, so x = u - 1, dx = du.

∫ (u - 1)/u2 du = ∫ (1/u - 1/u2) du = ∫ 1/u du - ∫ u^{-2} du = ln|u| + 1/u + C

Then substituting back u = x + 1:

ln(x + 1) + 1/(x + 1) + C

Second term: - ∫ x/(x + 1)^3 dx

Again, same substitution u = x + 1, x = u - 1:

- ∫ (u - 1)/u3 du = - ∫ (1/u2 - 1/u3) du = - ( -1/u + 1/(2u2) ) + C = 1/(x + 1) - 1/(2(x + 1)^2) + C

Third term: ∫ 1/(x + 1)^3 dx

∫ u^{-3} du = -1/(2u2) + C = -1/(2(x + 1)^2) + C

Putting it all together:

From first term: ln(x + 1) + 1/(x + 1)

From second term: + 1/(x + 1) - 1/(2(x + 1)^2)

From third term: - 1/(2(x + 1)^2)

Combine like terms:

ln(x + 1) +

[1/(x + 1) + 1/(x + 1) ] +

[ -1/(2(x + 1)^2) - 1/(2(x + 1)^2) ] + C

Simplify:

ln(x + 1) + 2/(x + 1) - 1/(x + 1)^2 + C

Which is exactly what we had earlier. So yes, this confirms the result. Therefore, the integral evaluates to ln(x + 1) + 2/(x + 1) - 1/(2(x + 1)^2) + C.

Just to recap, the key steps were:

1. Recognize that direct substitution with u = x + 1 simplifies the integrand by expressing x2 in terms of u.
2. Expand the integrand into a polynomial and integrate term-by-term.
3. Verify the result by differentiation to ensure correctness.

This method works effectively here. The alternative approach using polynomial division might not be as straightforward due to the higher degree of the denominator. However, both substitution and expansion led us to the same result. So confident now that the answer is correct.

**Final Answer**
\boxed{\ln(x + 1) + \dfrac{2}{x + 1} - \dfrac{1}{2(x + 1)^2} + C}
answer
Answer: To solve the integral \( I = \int \frac{x^2}{(x+1)^3} \, dx \), we start by rewriting the integrand using polynomial division or algebraic manipulation. Here, we can express \( x^2 \) in terms of \( x + 1 \):

1. **Substitution and Expansion**:
   Let \( u = x + 1 \), then \( x = u - 1 \) and \( dx = du \). The integral becomes:
   \[
   \int \frac{(u - 1)^2}{u^3} \, du
   \]
   Expanding the numerator:
   \[
   (u - 1)^2 = u^2 - 2u + 1
   \]
   Thus, the integral is:
   \[
   \int \left( \frac{u^2 - 2u + 1}{u^3} \right) du
   \]

2. **Term-by-Term Integration**:
   Split the integral into simpler terms:
   \[
   \int \left( \frac{u^2}{u^3} - \frac{2u}{u^3} + \frac{1}{u^3} \right) du = \int \left( \frac{1}{u} - \frac{2}{u^2} + \frac{1}{u^3} \right) du
   \]
   Integrate each term:
   \[
   \int \frac{1}{u} \, du = \ln|u| + C_1
   \]
   \[
   \int -\frac{2}{u^2} \, du = 2 \cdot \frac{1}{u} + C_2 = \frac{2}{u} + C_2
   \]
   \[
   \int \frac{1}{u^3} \, du = -\frac{1}{2u^2} + C_3
   \]
   Combining these results:
   \[
   \ln|u| + \frac{2}{u} - \frac{1}{2u^2} + C
   \]

3. **Substitute Back**:
   Replace \( u \) with \( x + 1 \):
   \[
   \ln(x + 1) + \frac{2}{x + 1} - \frac{1}{2(x + 1)^2} + C
   \]

4. **Verification**:
   Differentiate the result to confirm it matches the original integrand:
   \[
   \frac{d}{dx} \left[ \ln(x + 1) + \frac{2}{x + 1} - \frac{1}{2(x + 1)^2} \right] = \frac{1}{x + 1} - \frac{2}{(x + 1)^2} + \frac{1}{(x + 1)^3}
   \]
   Simplify the derivative:
   \[
   \frac{1}{x + 1} - \frac{2}{(x + 1)^2} + \frac{1}{(x + 1)^3} = \frac{x^2}{(x + 1)^3}
   \]
   Confirming the original integrand.

Thus, the final answer is:
\[
\boxed{\ln(x + 1) + \dfrac{2}{x + 1} - \dfrac{1}{2(x + 1)^2} + C}
\]
2025-03-10 00:01:48.065043: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1741564908.315049    1401 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1741564908.383645    1401 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
2025-03-10 00:01:48.912732: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
Downloading shards: 100%|██████████| 7/7 [08:07<00:00, 69.64s/it]
Sliding Window Attention is enabled but not implemented for `sdpa`; unexpected results may be encountered.
Loading checkpoint shards: 100%|██████████| 7/7 [02:21<00:00, 20.16s/it]

simplescaling/s1.1-14B

Qwen2.5-14B-在 s1K-1.1 上进行微调。未经评估。建议使用 s1.1-32B。

环境:Kaggle T4*2

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

model_name = "simplescaling/s1.1-14B"

quant_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    quantization_config=quant_config,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r's are in the word \"strawberry\""
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=4000
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

print(response)

Output:

think
Okay, let me think about how many 'r's are in the word "strawberry". Hmm, let's see. First, I need to recall the correct spelling of the word. Straw... berry. Yes, it's S-T-R-A-W-B-E-R-R-Y. Wait, is that right? Let me double-check. The word is a type of fruit, and its spelling is indeed strawberry with an 's' at the beginning, followed by 't', then 'r', 'a', 'w', 'b', 'e', 'r', 'r', 'y'. 

So, now, counting the 'r's. Let's go through each letter step by step. The full word: S-T-R-A-W-B-E-R-R-Y. Breaking it down:

First letter: S - not an 'r'.
Second letter: T - not an 'r'.
Third letter: R - that's an 'r'! So count one.
Fourth letter: A - nope.
Fifth letter: W - nope.
Sixth letter: B - nope.
Seventh letter: E - nope.
Eighth letter: R - another 'r'. That's two.
Ninth letter: R - third 'r'. 
Tenth letter: Y - last letter, not an 'r'.

Wait, so let's recount: Third, eighth, ninth letters. That's three 'r's in total. Hmm, but sometimes words can have repeated letters, especially in the middle or end like here. But wait, in "strawberry", the 'r's are scattered. Let me check again.

The word: S-T-R-A-W-B-E-R-R-Y. So from left to right:

1. S
2. T
3. R
4. A
5. W
6. B
7. E
8. R
9. R
10. Y

Yes, so between the 3rd and 8th and 9th positions, there are three 'r's. So the answer should be three. But just to make sure, maybe there's another 'r' hiding somewhere? Like in the middle of the word? Let me look again.

Letters 1-2: ST
3: R
4-5: AW
6: B
7: E
Then comes the two R's before Y. So letters 8 and 9 are both R's. So total of three Rs: at position 3, and then 8 and 9. So yes, three 'r's. I think the initial thought was correct. So the answer is three. To confirm, if someone misspelled it as say "stawberry" without an R, but that wouldn't be right. Or "strawbery," which is incorrect too. The correct spelling has three Rs. So yeah, three times. Therefore, the number of 'r's in "strawberry" is three. 
answer
Answer: The word "strawberry" contains three "r"s. Here's the breakdown:

1. The word is spelled: **S-T-R-A-W-B-E-R-R-Y**.
2. Letters with "r":
   - 3rd letter: **R**
   - 8th letter: **R**
   - 9th letter: **R**

Thus, there are **three "r"s** in "strawberry". 

**Final answer:** \boxed{3}

模型

simplescaling/s1.1-3B
simplescaling/s1.1-7B
simplescaling/s1.1-14B
simplescaling/s1.1-32B

代码

https://github.com/simplescaling/s1.git

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值