微积分-泰勒级数

有一个问题,针对物理中典型的单摆问题,加入我们要求高度R从表达式
在这里插入图片描述

这个高度会和 θ \theta θ 的角度成正比
在这里插入图片描述

在这里插入图片描述

在图像上,也能体现出近似
在这里插入图片描述
泰勒级数,就是为了得到在某个点附近用多项式去逼近函数,因为多项式函数容易计算,容易求导,容易积分

首先,我们有一个多项式

p ( x ) = c 0 + c 1 x + c 2 x p(x)=c_0+c_1x+c_2x p(x)=c0+c1x+c2x
在这里插入图片描述
首先我们要让x=0处近似,最合适从参数 c 0 , c 1 , c 2 c_0,c_1,c_2 c0,c1,c2应该如何选择(相当于调参?)
在这里插入图片描述
将x=0带入函数 c o s ( x ) cos(x) cos(x),得到的结果是1

将x=0带入多项式, p ( 0 ) = c 0 + c 1 x + c 2 x p(0)=c_0+c_1x+c_2x p(0)=c0+c1x+c2x,我们让p(0)也等于1

得到 1 = c 0 + 0 + 0 1=c_0+0+0 1=c0+0+0,所以 c 0 = 1 c_0=1 c0=1
在这里插入图片描述
确定了 c 0 c_0 c0 ,不管 c 1 c_1 c1 c 2 c_2 c2的值是多少,在x=0处,两个函数都为1

在这里插入图片描述

在这里插入图片描述

接下来我们让两个多项式在x=0时的斜率等于 c o s ( x ) cos(x) cos(x), 就会更近似
在这里插入图片描述
d ( c o s ( x ) ) = − s i n ( x ) d(cos(x))=-sin(x) d(cos(x))=sin(x)

− s i n ( 0 ) -sin(0) sin(0)=0
在这里插入图片描述
在这里插入图片描述
将x=0带入多项式的导函数,得到
在这里插入图片描述

在这里插入图片描述
知道了 c 0 c_0 c0, c 1 c_1 c1,就相当于确定了函数在x=0处的值和斜率,再来看 c 2 c_2 c2

在这里插入图片描述
乡下弯曲,说明函数的二阶导数为负
在这里插入图片描述

已知 c o s ( x ) cos(x) cos(x)的导函数是 − s i n ( x ) -sin(x) sin(x) ,二阶导函数就是 − s i n ( x ) -sin(x) sin(x) 的导函数, − c o s ( x ) -cos(x) cos(x)
在这里插入图片描述
那么原函数 c o s ( x ) cos(x) cos(x)在x=0处的二阶导数,

将x=0带入等于-1
在这里插入图片描述
让多项式的二阶导数和原函数的二阶导数相等
在这里插入图片描述

那么需要对多项式的导函数 0 + 2 c 2 x 0+2c_2x 0+2c2x 再次求导

在这里插入图片描述

得到多项式的二阶导函数为 2 ∗ c 2 2*c_2 2c2在这里插入图片描述
让多项式的二阶导数与原函数的二阶导数相等

得到 2 ∗ c 2 = − 1 2*c_2=-1 2c2=1在这里插入图片描述
最终得到的多项式函数为:
在这里插入图片描述
带入靠近0 的数验证
在这里插入图片描述
总结下,要得到某函数在一个点附近的近似

我们需要确定多项式 P ( x ) = c 0 + c 1 x + c 2 x 2 P(x)=c_0+c_1x+c_2x^2 P(x)=c0+c1x+c2x2中的三个参数 c 0 , c 1 , c 2 c_0, c_1, c_2 c0,c1,c2
三个参数分别表示在这一点上的函数值,这一点上函数的斜率,这一点上函数的二阶导数

还可以加上三阶
在这里插入图片描述
得到的近似
在这里插入图片描述
加上四阶
在这里插入图片描述
得到的近似
在这里插入图片描述

注意:
1.多项式在计算时,前面的项会被消掉,剩最后一项,要除以阶乘抵消阶乘的常数项
在这里插入图片描述

在这里插入图片描述
2.无论添加多少项,低次项保持不变
在这里插入图片描述
在这里插入图片描述
对于周期函数
在这里插入图片描述
对弈任意函数都有
在这里插入图片描述
计算任意一点啊的值时,要用x-a带入多项式
在这里插入图片描述
指数函数的多项式
在这里插入图片描述

多项式的几何理解:
在这里插入图片描述
在这里插入图片描述

泰勒多项式
在这里插入图片描述
泰勒级数

在这里插入图片描述

如果某个级数加的越多约接近目标值,我们说这个级数收殓到那个值
在这里插入图片描述
如:
在这里插入图片描述
来看对数函数
在这里插入图片描述
在0-2之间可以逼近原函数,出了2,就很难逼近,我们说它是发散
在这里插入图片描述
能让多项式收殓的最大范围叫做这个泰勒级数的收殓半径
在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 泰勒公式是一种近似函数值的方法,它可以用来估算一个函数在某一点附近的值。 设函数f(x)在x=a处可导,那么它的n阶导数存在。我们可以用如下公式来近似函数f(x)在x=a附近的值: f(x) ≈ f(a) + f'(a)(x-a) + (f''(a)/2!) (x-a)^2 + ... + (f^(n)(a)/n!) (x-a)^n 这就是泰勒公式的基本形式。可以看出,随着n的增大,泰勒公式的精度也会增高。 为了证明这个公式,我们可以使用泰勒公式的基本形式来展开函数f(x): f(x) = f(a) + ∑(n=1,∞) (f^(n)(a)/n!) (x-a)^n 然后我们可以使用数学归纳法证明: 1.当n=0时,泰勒公式成立 2.假设当n=k时,泰勒公式成立 3.当n=k+1时, f(x) = f(a) + ∑(n=1,k) (f^(n)(a)/n!) (x-a)^n + (f^(k+1)(a)/(k+1)!) (x-a)^(k+1) ∑(n=1,k) (f^(n)(a)/n!) (x-a)^n 与 f(x)的差值为 R(k+1)(x) = (f^(k+1)(a)/(k+1)!) (x-a)^(k+1) 由于 f(a) = f(x) -R(k+1)(x) 成立 所以当n=k+1时,泰勒公式仍然成立。 所以,对于任意的正整数n,泰勒公式都成立 ### 回答2: 泰勒公式是用来近似表示一个函数在某个点附近的展开式。我们可以用微积分的方法来证明泰勒公式。 设函数f(x)在区间[a,b]上连续,在(a,b)内具有各阶导数,且f(x)的(n+1)阶导数在这个区间内连续。那么对于这个区间内的任意一点x,存在一个点ξ,保证: f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + ... + fⁿ(a)(x-a)ⁿ/n! + Rⁿ(x) 其中Rⁿ(x)为Lagrange余项,可以表示为:Rⁿ(x) = (fⁿ⁺¹(ξ)(x-a)ⁿ⁺¹)/(n+1)! 为了证明泰勒公式,我们可以根据函数的导数定义和极限的性质进行推导。 首先,我们可以使用高阶导数的定义,对于x=a时,将函数f(x)进行泰勒展开。然后,使用导数定义的极限性质,我们可以得到展开式中各阶导数的表达式。 接着,我们用极限来证明Lagrange余项的存在性。我们可以构造一个辅助函数g(t),然后使用中值定理来证明在(a,b)内存在一个点ξ,使得Rⁿ(x)等于g(t)的极限。 最后,使用极限的性质以及泰勒级数的收敛性条件,我们可以得到泰勒公式的证明。根据展开式中各项的逐渐趋近于零,我们可以得到当n趋于无穷大时,Rⁿ(x)趋近于零,从而得到f(x)在a点附近的泰勒展开式。 综上所述,我们可以用微积分的方法证明了泰勒公式。 ### 回答3: 泰勒公式是微积分中非常重要的一个公式,可以用来近似计算函数在某一点附近的值。现在我们用微积分的知识来证明泰勒公式。 假设函数f(x)在某一点a处连续,并且在开区间(a, b)上存在n+1阶导数。我们要证明泰勒公式: f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2! + f'''(a)(x-a)^3/3! + ... + f^n(a)(x-a)^n/n! + R_n(x) 其中R_n(x)是余项,表示泰勒多项式和原函数之差。 首先,我们定义一个辅助函数,称为Lagrange中值定理函数,记作g(t) = f(x) - P_n(x),其中P_n(x)表示泰勒多项式的和式。我们可以得到g(a) = 0,而g(x)在(a, b)上具有(n+1)阶导数。 根据Lagrange中值定理,我们可以找到一个介于x和a之间的数c,使得g'(c) = 0。同理,我们可以找到介于x和c之间的数d,使得g''(d) = 0。通过不断重复这个过程,我们可以找到介于x和a之间的一系列数,把它们依次命名为c1、c2、c3、...,使得g^n(cn) = 0。 现在,我们可以考虑余项R_n(x)。根据Lagrange中值定理,我们可以推导出: R_n(x) = g(x) = g^(n+1)(c_n+1)(x-a)^(n+1)/(n+1)! 由于g^(n+1)(c_n+1) = f^(n+1)(c_n+1) - P_n^(n+1)(c_n+1) = f^(n+1)(c_n+1) - 0 = f^(n+1)(c_n+1),其中P_n^(n+1)(c_n+1)表示泰勒多项式的高阶导数,由于是和式,高阶导数为0。 所以,我们得到: R_n(x) = f^(n+1)(c_n+1)(x-a)^(n+1)/(n+1)! 这样,我们通过微积分的知识证明了泰勒公式。这个公式在近似计算中具有广泛的应用,可以有效地帮助我们进行函数值的估计。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值