多元微积分_三维散度

一.二维的散度

我们已经学习过二维的散度,在二维向量场内

有一个区域R

区域的边界是闭合曲线c

在这里插入图片描述
格林定理告诉我们

它的通量就是通过边界c的向量F与单位法向量的点击的积分
在这里插入图片描述
也等于微小面积dA的散度的积分
在这里插入图片描述
而由向量场的方向,我们基本可以判定散度和通量的情况

如下

左图向量场向外,散度为正

中图流出总体等于流入,散度为0

由图向量朝内,散度为负
在这里插入图片描述

那么在三维中,以下图为例

R则从面积变为体积

边界s则从曲线变为面

在这里插入图片描述
如果它的散度为正,向量场是从里向外发散的

在这里插入图片描述
所以三维的通量是通过变面积的向量与单位法向量的积分,因此是双重积分

这也等于球体内微小的小块体积的散度的积分


下面看一个例子

三维向量场F,

三维体R的表面是S

面积S的积分就等于微小体积dV的散度积分

散度是 ∇ \nabla 算子与向量场标量的点积

在这里插入图片描述

在这里插入图片描述

与F的标量在这里插入图片描述

的点积

1.对于
在这里插入图片描述
左边偏导就是x,有编制数部分全部为0

2.对于
在这里插入图片描述
左边对y求导得到x,右边的导数为0

3.对与
在这里插入图片描述
对z求导,相当于常数,导数为0

所以得到:
在这里插入图片描述
接下来确定积分边界

在这里插入图片描述
可以看出先对有积分,可以达到z的表达式,再对z积分可以得到x的表达式

因此我们按照这个顺序积分

在这里插入图片描述
2x的原函数等于2xy

在这里插入图片描述
带入边界2-z得到
在这里插入图片描述
在求2-z对于z的原函数
在这里插入图片描述
带入边界 1 − x 2 1-x^2 1x2得到
在这里插入图片描述
在求 3 x − 2 x 3 − x 5 3x-2x^3-x^5 3x2x3x5的原函数
在这里插入图片描述
带入边界
在这里插入图片描述
得到的值为0

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值