多元微积分_二维散度定理

曲线r是关于t的函数,有x和y两个分量

我们知道曲线r的切线,是曲线上接近的两点r1和r2的值的差 δ r \delta r δr

当引入极限的概念的时候,让r1和r2无限接近,几乎成一点的时候,可以近似的看成 δ r \delta r δr只与曲

线交于一点,这就是我们切线的概念
在这里插入图片描述
而dr也可以表示成i和j两个分量的微小增量dxi和dyj的和(向量加法原理)

在这里插入图片描述
有了切向量的算术表示,我们就可以求法向量

我们已经知道法向量垂直于切向量,但是如何确定二维法向量的方向
在这里插入图片描述
如图,

(dx)i+(dy)j=dr

dx和dy是标量,i和j是基向量

我们变换下标量,即(dx)j+(dy)i

在这里插入图片描述
验证下dx,dy都是负值的情况

将基向量i和j前面的标量dx,dy互相交换

dy的符号不变,dx改变符号,相当于(dx)乘以-1,原来是正,变成负;原来是负,变成正

在这里插入图片描述
法向量a

在这里插入图片描述
而我们知道通量公式

我们可以理解为在曲线上的每一段弧长的微分ds,在这一点上向量场f的方向有多少是与法向量方向接近的
在这里插入图片描述
定义F

我们已经知道了法向量

带入,消去ds
在这里插入图片描述
现在我们只剩下 F ⃗ ∗ [ ( d y ) i − ( d x ) j ] \vec{F}*[(dy)i-(dx)j] F [(dy)i(dx)j]

只需要取F与dy,dx的点积

[ P ( x , y ) Q ( x , y ) ] \begin{bmatrix} P(x,y) \\ Q(x,y) \\ \end{bmatrix} [P(xy)Q(xy)] * [ d y − d x ] \begin{bmatrix} dy \\ -dx \\ \end{bmatrix} [dydx]

得到:
在这里插入图片描述

这个结果似乎和格林定理有些关系

我们来看格林定理

格林定理告诉我们闭合曲线c的积分,等于曲线内面积的双重积分
在这里插入图片描述
而对于格林定理,这里有记忆的方法

无论是什么函数乘以dy,我们只需对这个函数取x的偏导

这里和上面取圆弧ds的法向量一样,本质是交换了i和j的标量,并将i的标量变换符号
在这里插入图片描述

应用上面的原理,dy前面的函数p对x取偏导,

dx前面的函数对y取偏导,并变换符号

得到
在这里插入图片描述
而我们之前学习过

这就是向量场F的散度

在这里插入图片描述
二维向量场F中的闭合曲线c上的通量积分,也就是F的散度的积分
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值