如何理解行列式:
行列式可以看做是变换后空间被拉伸了多少
具体就是求一个给定区域面积增大或减小的比例
如:
变换后面积增大了6倍
剪切变换后因为平行四边形的宽和高没变,所以面积没有改变
由此,我们只需要知道变换后的i-hat和j-hat围城的面积相对变换之前的变换,根据网格等距分布,就可以知道所要求的区域的面积变化
线性变换的行列式用det()表示,求得的结果是一个整数
如:
一个线性变换的行列式为3,那么说明这个变换将原来的空间缩放了3倍
一个线性变换的行列式为0,说明这个变换将原来的空间压缩成了点或线
反过来说说一个线性变换的行列式为0 ,我们就知道这个变换有减维/降维
如果一个线性变换后的行列式为负,那么这个空间发生了翻转,即变换后i-hat在j-hat的左边
三维空间,既是体积的变化
如一个三维变换将正方体拉伸成平行六面体,即求出平行六面体的体积变化
如何判断三维空间是否翻转:
右手定则
如果变换后只能用左手对应基向量,则说明空间发生了翻转
行列式的计算
1.二维:
2.三维:
例: