线性代数-逆矩阵、列空间、秩与零空间

逆变换思想:

对于线性方程组

在这里插入图片描述
上面的方程组来起来就是线性变换,所以

可以将其看成是未知向量x经过矩阵A变换后成了向量v:
在这里插入图片描述
同理二元方程可表示:
在这里插入图片描述
以二元方程为例,向量x经过A所代表的变换变成了向量V,这个方程的解依赖于A所代表的变换

分两种情况:

1.变换后A的行列式不为0,即变换A没有改变空间的维度

在这里插入图片描述

变换前的向量X和变换后的向量v都是唯一
在这里插入图片描述

而且你可以通过逆变换将V变换回X
在这里插入图片描述

逆变换即将经历的变换恢复到原始状态,因此,矩阵经历了A代表的变换,再作用一次A的逆变换就恢复到了初始的状态
在这里插入图片描述

在这里插入图片描述
利用逆变换的思想,可以很容易的求出向量x
在这里插入图片描述

因为变换前的向量X和变换后的向量v都是唯一
方程只有唯一解
在这里插入图片描述
同理在三维空间也成立:
在这里插入图片描述

2.变换后的行列式为0,即发生了降维
在这里插入图片描述
如果空间被压缩成一条直线,且变换后V在压缩后的直线上,则解存在,负责不存在解
在这里插入图片描述
秩:

秩代表的是变换后的空间的维度
在这里插入图片描述
如一个3*3的矩阵,满秩为3,压缩到二维时,我们说他的秩为2,变换成一维后,秩为1,

列空间:

列空间代表变换后的矩阵所张成的空间
在这里插入图片描述
由此可知,列空间的维数就是变换后的秩

特殊:
在这里插入图片描述
零空间

变换后落在原点的向量的集合,称为零空间,核或者核空间
在这里插入图片描述
二维被挤压成一条直线:
在这里插入图片描述
在这里插入图片描述
这些向量变成了零空间
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210511100154650.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,co
三维压缩到二维:
在这里插入图片描述

三维压缩到一维:
在这里插入图片描述

三维压缩到零点
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值