Transformer的PyTorch实现之若干问题探讨(一)

Transformer的PyTorch实现》这篇博文以一个机器翻译任务非常优雅简介的阐述了Transformer结构。在阅读时存在一些小困惑,此处权当一个记录。

1.自定义数据中enc_input、dec_input及dec_output的区别

博文中给出了两对德语翻译成英语的例子:

# S: decoding input 的起始符
# E: decoding output 的结束符
# P:意为padding,如果当前句子短于本batch的最长句子,那么用这个符号填补缺失的单词
sentence = [
    # enc_input   dec_input    dec_output
    ['ich mochte ein bier P','S i want a beer .', 'i want a beer . E'],
    ['ich mochte ein cola P','S i want a coke .', 'i want a coke . E'],
]

初看会对这其中的enc_input、dec_input及dec_output三个句子的作用不太理解,此处作详细解释:
-enc_input是模型需要翻译的输入句子,
-dec_input是用于指导模型开始翻译过程的信号
-dec_output是模型训练时的目标输出,模型的目标是使其产生的输出尽可能接近dec_output,即为翻译真实标签。他们在transformer block中的位置如下:
在这里插入图片描述

在使用Transformer进行翻译的时候,需要在Encoder端输入enc_input编码的向量,在decoder端最初只输入起始符S,然后让Transformer网络预测下一个token。

我们知道Transformer架构在进行预测时,每次推理时会获得下一个token,因此推理不是并行的,需要输出多少个token,理论上就要推理多少次。那么,在训练阶段,也需要像预测那样根据之前的输出预测下一个token,然而再所引出dec_output中对应的token做损失吗?实际并不是这样,如果真是这样做,就没有办法并行训练了。

实际我认为Transformer的并行应该是有两个层次:
(1)不同batch在训练和推理时是否可以实现并行?
(2)一个batch是否能并行得把所有的token推理出来?
Tranformer在训练时实现了上述的(1)(2),而推理时(1)(2)都没有实现。Transformer的推理似乎很难实现并行,原因是如果一次性推理两句话,那么如何保证这两句话一样长?难道有一句已经结束了,另一句没有结束,需要不断的把结束符E送入继续预测下一个结束符吗?此外,Transformer在预测下一个token时必须前面的token已经预测出来了,如果第i-1个token都没有,是无法得到第i个token。因此推理的时候都是逐句话预测,逐token预测。这儿实际也是我认为是transformer结构需要改进的地方。这样才可以提高transformer的推理效率。

2.Transformer的训练流程

此处给出博文中附带的非常简洁的Transformer训练代码:

from torch import optim
from model import *

model = Transformer().cuda()
model.train()
# 损失函数,忽略为0的类别不对其计算loss(因为是padding无意义)
criterion = nn.CrossEntropyLoss(ignore_index=0)
optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.99)

# 训练开始
for epoch in range(1000):
    for enc_inputs, dec_inputs, dec_outputs in loader:
        '''
        enc_inputs: [batch_size, src_len] [2,5]
        dec_inputs: [batch_size, tgt_len] [2,6]
        dec_outputs: [batch_size, tgt_len] [2,6]
        '''
        enc_inputs, dec_inputs, dec_outputs = enc_inputs.cuda(), dec_inputs.cuda(), dec_outputs.cuda() # [2, 6], [2, 6], [2, 6]
        outputs = model(enc_inputs, dec_inputs) # outputs: [batch_size * tgt_len, tgt_vocab_size]
        loss = criterion(outputs, dec_outputs.view(-1))  # 将dec_outputs展平成一维张量

        # 更新权重
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print(f'Epoch [{epoch + 1}/1000], Loss: {loss.item()}')
torch.save(model, f'MyTransformer_temp.pth')

这段代码非常简洁,可以看到输入的是batch为2的样本,送入Transformer网络中直接logits算损失。Transformer在训练时实际上使用了一个策略叫teacher forcing。要解释这个策略的意义,以本博文给出的样本为例,对于输入的样本:

ich mochte ein bier

在进行训练时,当我们给出起始符S,接下来应该预测出:

I

那训练时,有了SI后,则应该预测出

want

那么问题来了,如I就预测错了,假如预测成了a,那么在预测want时,还应该使用Sa来预测吗?当然不是,即使预测错了,也应该用对应位置正确的tokenSI去预测下一个token,这就是teacher forcing。

那么transformer是如何实现这样一个teacher forcing的机制的呢?且听下回分解。

  • 26
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Transformer是一种基于自注意力机制的神经网络模型,用于处理序列到序列的任务,如机器翻译、文本摘要等。PyTorch是一个流行的深度学习框架,提供了实现Transformer模型的工具和库。使用PyTorch实现Transformer模型可以方便地进行模型训练和调试,并且可以利用PyTorch的自动求导功能来优化模型参数。 ### 回答2: Transformer是一种用于序列建模的深度学习模型,它可以用于自然语言处理中的机器翻译、文本分类、语言模型等任务。它的设计思路是利用注意力机制来捕捉输入序列之间的关系。 PyTorch是一种基于Python的优秀的深度学习框架。在PyTorch中,可以使用预定义的模型类来实现Transformer模型。Transformer模型在PyTorch框架中实现的方法主要分为两种:自定义层和PyTorch自带模块。 自定义层 在PyTorch中,借助于nn.Module和nn.Parameter类,可以轻松地定义自己的模型层。下面是一个例子: ``` import torch import torch.nn as nn import torch.nn.functional as F class MultiHeadAttention(nn.Module): def __init__(self, d_model, heads): super().__init__() self.d_model = d_model self.heads = heads assert d_model % heads == 0 self.d_k = d_model // heads self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) q = self.q_linear(q).view(bs, -1, self.heads, self.d_k) k = self.k_linear(k).view(bs, -1, self.heads, self.d_k) v = self.v_linear(v).view(bs, -1, self.heads, self.d_k) q = q.permute(0, 2, 1, 3) k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32)) if mask is not None: mask = mask.unsqueeze(1).repeat(1, self.heads, 1, 1) scores = scores.masked_fill(mask == 0, -1e9) scores = F.softmax(scores, dim=-1) attention = torch.matmul(scores, v) attention = attention.permute(0, 2, 1, 3).contiguous() attention = attention.view(bs, -1, self.heads * self.d_k) return self.out(attention) ``` 此处定义了一个MultiHeadAttention类,并在初始化函数中定义各个线性层,而forward函数则为模型的前向传递代码。 其中,MultiHeadAttention中的q、k、v分别表示查询、键和值的输入张量,mask为特殊的掩码,用于限制注意力机制只看前面的信息。在forward函数中,我们首先把输入张量传递到各自的线性层中,然后按照头数分割,为每个头初始化查询、键和值(使用view函数),然后使用softmax归一化注意力分布,最后用权重矩阵与值矩阵的乘积形成输出。最后我们将头合并,返回输出张量。 这样,我们就可以通过自定义层的方式来定义Transformer模型。需要注意的是,在整个模型中,每一个自定义层应该加一次Layer Normalization。 使用PyTorch自带模块 除了使用自定义层,PyTorch还提供了一些预定义的模块类,用于模型的构建。下面是一个使用PyTorch自带模块搭建的Transformer模型: ``` import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class MultiHeadAttention(nn.Module): def __init__(self, d_model, heads): super().__init__() self.d_model = d_model self.heads = heads assert d_model % heads == 0 self.d_k = d_model // heads self.qkv = nn.Linear(d_model, 3 * d_model) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) qkv = self.qkv(torch.cat([q, k, v], dim=-1)) qkv = qkv.view(bs, -1, self.heads, 3 * self.d_k).transpose(1, 2) q, k, v = qkv[:, :, :, :self.d_k], qkv[:, :, :, self.d_k:2*self.d_k], qkv[:, :, :, 2*self.d_k:] scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32)) if mask is not None: mask = mask.unsqueeze(1).repeat(1, self.heads, 1, 1) scores = scores.masked_fill(mask == 0, -1e9) scores = F.softmax(scores, dim=-1) attention = torch.matmul(scores, v) attention = attention.transpose(1, 2).contiguous().view(bs, -1, self.heads * self.d_k) return self.out(attention) class PositionwiseFeedForward(nn.Module): def __init__(self, d_model, hidden_dim): super().__init__() self.fc1 = nn.Linear(d_model, hidden_dim) self.fc2 = nn.Linear(hidden_dim, d_model) def forward(self, x): return self.fc2(F.relu(self.fc1(x))) class Normalization(nn.Module): def __init__(self, d_model): super().__init__() self.d_model = d_model self.alpha = nn.Parameter(torch.ones(self.d_model)) self.bias = nn.Parameter(torch.zeros(self.d_model)) def forward(self, x): norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) / (x.std(dim=-1, keepdim=True) + 1e-6) + self.bias return norm class EncoderLayer(nn.Module): def __init__(self, d_model, heads, hidden_dim): super().__init__() self.attention = MultiHeadAttention(d_model=d_model, heads=heads) self.norm1 = Normalization(d_model=d_model) self.dropout1 = nn.Dropout(0.5) self.feed_forward = PositionwiseFeedForward(d_model=d_model, hidden_dim=hidden_dim) self.norm2 = Normalization(d_model=d_model) self.dropout2 = nn.Dropout(0.5) def forward(self, x, mask=None): x2 = self.attention(x, x, x, mask=mask) x = self.norm1(x + self.dropout1(x2)) x2 = self.feed_forward(x) x = self.norm2(x + self.dropout2(x2)) return x class Encoder(nn.Module): def __init__(self, d_model, heads, hidden_dim, num_layers): super().__init__() self.layers = nn.ModuleList([ EncoderLayer(d_model=d_model, heads=heads, hidden_dim=hidden_dim) for _ in range(num_layers) ]) def forward(self, src, mask=None): for layer in self.layers: src = layer(src, mask=mask) return src class DecoderLayer(nn.Module): def __init__(self, d_model, heads, hidden_dim): super().__init__() self.attention1 = MultiHeadAttention(d_model=d_model, heads=heads) self.norm1 = Normalization(d_model=d_model) self.dropout1 = nn.Dropout(0.5) self.attention2 = MultiHeadAttention(d_model=d_model, heads=heads) self.norm2 = Normalization(d_model=d_model) self.dropout2 = nn.Dropout(0.5) self.feed_forward = PositionwiseFeedForward(d_model=d_model, hidden_dim=hidden_dim) self.norm3 = Normalization(d_model=d_model) self.dropout3 = nn.Dropout(0.5) def forward(self, x, memory, src_mask=None, tgt_mask=None): x2 = self.attention1(x, x, x, mask=tgt_mask) x = self.norm1(x + self.dropout1(x2)) x2 = self.attention2(x, memory, memory, mask=src_mask) x = self.norm2(x + self.dropout2(x2)) x2 = self.feed_forward(x) x = self.norm3(x + self.dropout3(x2)) return x class Decoder(nn.Module): def __init__(self, d_model, heads, hidden_dim, num_layers): super().__init__() self.layers = nn.ModuleList([ DecoderLayer(d_model=d_model, heads=heads, hidden_dim=hidden_dim) for _ in range(num_layers) ]) def forward(self, tgt, memory, src_mask=None, tgt_mask=None): for layer in self.layers: tgt = layer(tgt, memory, src_mask=src_mask, tgt_mask=tgt_mask) return tgt class Transformer(nn.Module): def __init__(self, d_model, heads, hidden_dim, num_layers, src_vocab_size, tgt_vocab_size, max_length): super().__init__() self.encoder = Encoder(d_model=d_model, heads=heads, hidden_dim=hidden_dim, num_layers=num_layers) self.decoder = Decoder(d_model=d_model, heads=heads, hidden_dim=hidden_dim, num_layers=num_layers) self.src_embedding = nn.Embedding(src_vocab_size, d_model) self.tgt_embedding = nn.Embedding(tgt_vocab_size, d_model) self.out = nn.Linear(d_model, tgt_vocab_size) self.max_length = max_length def make_src_mask(self, src): src_mask = (src != 0) return src_mask def make_tgt_mask(self, tgt): tgt_pad_mask = (tgt != 0) tgt_len = tgt.shape[1] tgt_sub_mask = torch.tril(torch.ones((tgt_len, tgt_len))) tgt_mask = tgt_pad_mask.unsqueeze(1) & tgt_sub_mask return tgt_mask def forward(self, src, tgt): src_mask = self.make_src_mask(src) tgt_mask = self.make_tgt_mask(tgt) src_embedded = self.src_embedding(src) tgt_embedded = self.tgt_embedding(tgt) memory = self.encoder(src_embedded, mask=src_mask) output = self.decoder(tgt_embedded, memory, src_mask=src_mask, tgt_mask=tgt_mask) output = self.out(output) return output ``` 与自定义层类似,在PyTorch实现Transformer模型也借助于nn.Module和nn.Parameter类定义自己的模型层。上述代码中,分别定义了MultiHeadAttention、PositionwiseFeedForward、Normalization、EncoderLayer、EncoderDecoderLayerDecoderTransformer八个类,一共分为EncoderDecoderTransformer三部分。 对于Transformer模型而言,Encoder若干个EncoderLayer层,每个EncoderLayer层中有一个MultiHeadAttention层和一个PositionwiseFeedForward层,而Decoder中也有若干DecoderLayer层,每个DecoderLayer层中有两个MultiHeadAttention层和一个PositionwiseFeedForward层。在EncoderDecoder的代码中,还分别添加了make_src_mask和make_tgt_mask函数,用于生成掩码。 最后,我们使用Transformer类将EncoderDecoder组合在一起,并实现整个模型的前向传递。在前向传递的过程中,我们需要先通过词向量嵌入层将输入编码,然后在Encoder中将编码的输入信息进行处理,并在Decoder中将编码信息解码,最终通过输出层得到输出。整个模型都是基于PyTorch的自带模块组合而成的。 综上所述,通过自定义层或者利用PyTorch自带模块,我们可以很容易地实现Transformer模型,并使用PyTorch框架进行训练和预测等操作。 ### 回答3: transformer是自然语言处理领域一种重要的模型,它在机器翻译、文本生成、文本分类等任务中都有广泛的应用。PyTorch是一种流行的深度学习框架,它能够帮助我们更加方便地实现各种深度学习算法,包括transformertransformer模型的核心是自注意力机制,它可以让模型在处理序列数据能够自动地关注到重要的信息。具体来说,transformer的自注意力机制包含了三个部分:查询(Q)、键(K)和值(V)。每个部分都是向量,其中查询向量表示我们希望关注到的信息,而键向量和值向量则表示序列中的每个位置都包含的信息。通过计算查询向量和所有键向量之间的相似度,我们可以得到一个权重向量,用来表示每个位置对于查询向量的重要程度。然后,我们可以将重要程度和对应位置的值向量加权求和,得到自注意力机制的输出。 在PyTorch实现transformer模型,我们可以借助官方提供的transformer模块,只需要定义好模型的输入、输出、层数等超参数,就能够很方便地搭建一个transformer模型。下面是一个实现transformer模型的样例代码: import torch.nn as nn import torch.nn.functional as F from torch.nn import TransformerEncoder, TransformerEncoderLayer class TransformerModel(nn.Module): def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5): super(TransformerModel, self).__init__() self.pos_encoder = PositionalEncoding(ninp, dropout) encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout) self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers) self.encoder = nn.Embedding(ntoken, ninp) self.ninp = ninp self.decoder = nn.Linear(ninp, ntoken) self.init_weights() def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, src, src_mask): src = self.encoder(src) * math.sqrt(self.ninp) src = self.pos_encoder(src) output = self.transformer_encoder(src, src_mask) output = self.decoder(output) return output 其中,我们使用了PositionalEncoding模块来对输入的序列进行位置编码,EncoderLayer模块实现transformer的一个编码层,Encoder模块则包含了多个编码层,组成了整个transformer模型。在forward函数中,我们首先对输入进行嵌入和位置编码操作,然后使用transformer编码器进行编码,最后通过线性层得到模型的输出。 总之,PyTorch提供了方便的transformer模块实现方式,我们只需要定义好模型的超参数和组件,就可以快速搭建出一个强大的transformer模型来处理不同的NLP任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值