残差图

本文介绍了残差图的概念及其在回归分析中的作用。通过不同的横坐标选择(如拟合值、观测值或时间),可以有效检测模型的有效性和异常值。文章详细解释了如何解读残差图,并给出了几种典型的残差图形态及其含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

残差图

 残差图是以某种残差为纵坐标,以其他适宜的两位横坐标的散点图。这里横坐标有多种选择,最常见的选择是:

  • 因素的拟合值
  • 某变量的观察值
  • 在因变量的观察值 Y1,Y2,,Yn Y 1 , Y 2 , ⋯ , Y n 为一时间序列时

 横坐标可取为观察时间或观察序号。通过对残差及残差图的分析,以考察模型假设的合理性的方法,称为残差分析。这些方法比较直观,应用上效果也好。目前许多统计软件包均能打出残差图。可用来检查回归线的异常点,在分析观测中常用的散点图是以自变量我横坐标的残差图。

定义

 以残差 ϵ^i ϵ ^ i 为纵坐标,以拟合值 y^i y ^ i 或对应的数据观测序号 i i 或数据观测时间为横坐标的散点图称为残差图,残差图是进行模型诊断的重要工具。

横坐标为回归值

 为检验建立的多元线性回归模型是否合适,可以通过回归值Y^与残差的散点图来检验,其方法是画出回归值 Y^ Y ^ 与普通残差的散点图 (Y^i,ϵ^i),i=1,2,,n ( Y ^ i , ϵ ^ i ) , i = 1 , 2 , ⋯ , n 或者画出回归值 Y^ Y ^ 与标准残差的散点图 (Y^i,ri),i=1,2,,n ( Y ^ i , r i ) , i = 1 , 2 , ⋯ , n 其图形可能出现以下三种情况:

 对于图1(a)的情况,不论回归值 Y^ Y ^ 具有相同的分布,而残差 ϵ^i ϵ ^ i ri r i 并满足模型的各假设条件;对于图1(b)的情况,表示回归值 的 Y^ Y ^ 大小与残差的波动大小有关系,即等方差性的假设有问题;对于图1(c),表示线性模型不合适的样本,可能有异常值存在

 对于图1(a),如果大部分点都落在中间(b)部分,而只有少数几个点落在外边,则这些点对应的样本,可能有异常值存在。

横坐标为观测值

 以每个 Xj(1<j<p) X j ( 1 < j < p ) 的各个观测值 xij1<i<n) x i j ( 1 < i < n ) 为点的横坐标,即以自变量为横坐标的残差图。与拟合值 Y^ Y ^ 为横坐标的残差图一样,满意的残差图呈现图1a的水平带状,如果呈图1b的形状,则说明误差是等方差的假设不合适,若呈现图1c的形状,则需要再模型中添加 Xj X j 的高次项,或者对 Y Y <script type="math/tex" id="MathJax-Element-122">Y</script>作变换。

图1a

图1a

图1b

图1(b)

图1c

图1(c)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值