图卷积网络 GCN 综述

本文深入探讨了图卷积网络(GCN),从离散卷积的概念开始,介绍了CNN到GCN的转变,重点讲解了GCN的理论基础,包括拉普拉斯矩阵和傅立叶变换,并阐述了GCN的网络结构。此外,还提供了相关的参考资料和源代码链接。
摘要由CSDN通过智能技术生成

文献题目:Semi-Supervised Classification with Graph Convolutional Networks
文献来源:ICLR 2017
原文链接:https://arxiv.org/abs/1609.02907

参考笔记
GCN 理论:https://blog.csdn.net/weixin_36474809/article/details/89316439
离散卷积:https://zhuanlan.zhihu.com/p/35630785

离散卷积

( f ∗ g ) ( n ) (f*g)(n) (fg)(n) f , g f,g fg 的卷积,离散卷积本质是一种加权求和

连续卷积定义为:

( f ∗ g ) ( n ) = ∫ − ∞ ∞ f ( τ ) g ( n − τ ) d τ (f*g)(n) = \int_{-∞}^∞f(\tau)g(n-\tau)d\tau (fg)(n)=f(τ)g(nτ)dτ

离散卷积定义为:

( f ∗ g ) ( n ) = ∑ τ = − ∞ ∞ f ( τ ) g ( n − τ ) (f*g)(n) = \sum_{\tau=-∞}^∞f(\tau)g(n-\tau) (fg)(n)=τ=f(τ)g(nτ)

卷积神经网络 - CNN

CNN 中的卷积本质上是利用一个共享参数的过滤器(kernel),通过计算像素中心点的加权和来构成 feacher map 实现空间特征的提取, 其中加权系数是卷积核的权重系数。

图1 CNN中的卷积过程

CNN 中的卷积过程如图1所示,首先随机化 kernel 初值,然后根据误差函数通过反向传播梯度下降进行迭代优化。

CNN → \rightarrow GCN

CNN 可以有效提取空间特征,但是 CNN 处理的图像或视频数据中的像素点(pixel)是整齐排列的矩阵,即很多论文中提到的欧式结构(Euclidean Structure),如图2所示。

图2 欧几里得空间与非欧几里得空间

现实世界中的许多问题都可以通过非欧结构的图结构表述,如基因序列关系、蛋白质结构、知识图谱和社交网络等。概率图模型(Probablistic Graphical Model,PGM)和图神经网络(Graph Neural Networks,GNN)是处理图结构的两个代表性的方向。

融入 CNN 的 GCN 框架是最流行的 GNN 之一,但是图结构中邻居节点的个数不固定,无法计算核卷积,所以 CNN 不能直接用在属于非欧空间的图结构上。对此有两种解决办法:一是固定邻居节点数,二是将非欧空间的图转换到欧式空间,GCN 属于第二种思路。

图卷积网络

图卷积网络(Graph Convolutional Network,GCN)是对图结构进行操作的卷积神经网络。

理论基础

1. 拉普拉斯矩阵

对于图结构的特征提取主要分为空域(Spatial Domain)和频域(Spectral Domain)两种方法:频域法使用谱分解的方法,应用图的拉普拉斯矩阵分解进行节点的信息收集;空域法直接使用图的拓扑结构,根据图的邻接信息进行信息收集。

GCN 采用的是频域法,对于给定图 G = ( V , E ) G=(V,E) G=(V,E),其拉普拉斯矩阵定义为 L = D − A L=D-A L=D

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值