【数据挖掘】时间序列分析理论和使用SPSS进行ARIMA模型分析

1 前言

1.1 基本概念

时间序列分析(Time Series Analysis)是研究事物发展变化规律的一种量化分析方法,隶属于统计学但又不同于其他统计分析方法的特殊特点。对于时间序列可以有不同层次的理解,一般情况下,那些依据时间先后顺序排列起来的一系列有相同内涵的数据都可以称为时间序列。
实际上,只要能够被持续地观察和度量,同时被记录,就能得到所谓的时间序列。这一点对于我们测绘的太熟悉不过了,变形监测的沉降数据、卫星的周期观测数据等等都属于时间序列数据。
在这里插入图片描述
(图片来源: 线性时间序列案例学习—全球温度异常值
指标集 是指可以直观理解为时间t的取值范围,对一般的随机过程来说它是一个连续变化的范围。
采样间隔 意思是时间序列中相邻两个数的时间间隔。在实际研究中,在整个数据期间一般都取一致的时间间隔,这样会使分析结果更具直观意义,易令人信服。
平稳随机过程 在一些时间序列分析方法当中要求时间序列具有平稳性,即要求时间序列对应的随机过程是一个平稳的随机过程。
白噪声序列 白噪声序列是一种特殊的平稳序列,它定义为:若堆积序列{yt}由互补相关的随机变量构成,即对所有s≠t,Cov(ys,yt)=0,则称其为白噪声序列。可以看出,白噪声序列是一种平稳序列,在不同时点上的随机变量的协方差为0,。该特性通常被称为“无记忆性”,意味着人们无法根据过去的特点推测其未来的走向,其变化没有规律可循。虽然有这个特性,但是白噪声序列是其他时间序列产生的基石,这在时间序列ARIMA模型分析中体现得相当明显。另外,时间序列分析中,当模型的残差序列称为白噪声序列时,可认为模型达到了较好的效果,剩余残差中已经没有可以识别的信息。因此,白噪声序列对模型检验也是很有用处的。
时点序列和时期序列 实际之中,人们研究的时间序列是前面提到的随机过程的一个“实现”,也就是那些按时间先后顺序排列的一系列数据。这些数据往往由两部分组成:一是观测值;二是观测值对应的时间点或时间段。

1.2 时间序列分析的一般步骤

(1)数据的准备阶段
(2)数据的观察及检验阶段
(3)数据的预处理阶段
(4)数据分析和建模阶段
(5)模型的评价阶段
对于(4):谱分析方法适用于那些高频波动数据,通过对序列中各种周期成分的识别来达到模型识别、随机性波动检验、趋势性识别等目的。
对于(5):模型评价应于模型分析的目标相结合,与研究目的相结合。预测是时间序列分析的重要目标之一。预测是时间序列分析的重要目标之一。预测精度无疑是衡量模型好坏的重要指标。预测精度的衡量指标包括误差平方和SSE、平均绝对百分误差MAPE,拟合优度R方,预测值的方差,等等。
时间序列的横向关系是时间序列分析的另一重要目标。对此模型中变量的相关性也是考察的重点。模型的F统计值、各个变量系数t、AIC、SBC等统计量都是参考的重要依据。
在时间序列的回归分析当中,控制往往也是分析的目标之一。对此考察变量间准确而非虚假的因果数量关系也是模型评价的重点。模型中的系数不但要通过显著性检验,还必须有一定的实际意义,这就涉及模型估计方法的选择问题。
(6)模型的

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值