音乐文件推荐
目录
5. 强调:当前用户听了某一首歌曲,然后这个时候到底如何给定推荐列表???
-
1. 需求:
- 为每个用户每天产生30首歌的推荐列表 à 每日30首歌/7首歌
- 当用户听到某个歌的时候,给当前用户推荐类似的歌曲à 推荐类似物品/经常一起购买的商品/购买该商品也购买其他商品的推荐列表
- 当用户在歌单页面的时候,给用户推荐相似的其他歌单à
-
2. 数据要求
- 认为如果歌曲对用户产生了行为,体现了该用户对于该歌曲的喜好程度(创建歌单添加歌曲à3分,循环收听5分,删除歌曲-3分);基于用户对歌曲的偏好信息à 直接使用协同过滤算法,可以为用户推荐其他感兴趣的歌曲à 需要数据: 用户对于歌曲的行为数据 à 用户行为日志
- 本质找出相似的歌曲,基于歌曲之间的相似度,计算这个推荐列表è 实现方式:协同过滤/普通的聚类算法。。。
- 本质找出相似的歌单,基于歌单之间的相似度计算这个推荐列表 è 实现方式:协同过滤,普通的聚类算法…
实际工作中主要需要的数据就是:用户行为日志数据、物品相关的信息数据、用户相关的信息数据
问题:如何获取数据???? 任何的机器学习业务首要的需要解决的问题就是数据从哪儿来???
- 对于公司内部来讲/自身企业来讲,用户的播放、点击、收藏等数据其实可以直接拿到的
- 对于我们来讲,我们只能选择一个取巧的方式:使用歌单的信息来作为原始数据 --> 因为在同一个歌单中的歌曲在一定程度上具有相同的特征的
-
3. 数据说明
见后面表