一、引言
今天遇到了这么一道积分题:
∫
3
sin
x
+
cos
x
sin
x
−
cos
x
d
x
\int \frac{3\sin x+\cos x}{\sin x - \cos x} \,dx
∫sinx−cosx3sinx+cosxdx
三角函数的分式,按顺序思考:1. 凑微分, 2. 化简成一次式,或可以直接积分/凑微分积分的形式, 3. 拆项,4. 和差化积,5. 万能代换。
万能代换自然是通解,在该题中,分子分母幂次相同,均为一次幂,用 t = tan x 2 t=\tan\frac{x}{2} t=tan2x 代入后,化为有理积分自然能解,也不难。但这样还是有些繁琐。
参考答案是凑微分:
∫
3
sin
x
+
cos
x
sin
x
−
cos
x
d
x
=
∫
sin
x
−
cos
x
sin
x
−
cos
x
d
x
+
∫
2
(
cos
x
+
sin
x
)
sin
x
−
cos
x
d
x
=
∫
d
x
+
2
∫
d
(
sin
x
−
cos
x
)
sin
x
−
cos
x
=
x
+
2
ln
∣
sin
x
−
cos
x
∣
+
C
\begin{aligned} \int \frac{3\sin x+\cos x}{\sin x - \cos x} \,dx &= \int \frac{\sin x - \cos x}{\sin x - \cos x} \, dx + \int \frac{2(\cos x+\sin x)}{\sin x - \cos x} \,dx \\ \\ &= \int \,dx + 2 \int \frac{d(\sin x - \cos x)}{\sin x - \cos x} \\ \\ &= x + 2 \ln|\sin x - \cos x| + C \end{aligned}
∫sinx−cosx3sinx+cosxdx=∫sinx−cosxsinx−cosxdx+∫sinx−cosx2(cosx+sinx)dx=∫dx+2∫sinx−cosxd(sinx−cosx)=x+2ln∣sinx−cosx∣+C
可能有同学会觉得很奇妙——啊这是怎么能想到的?我咋看不出来可以这么凑呢?这也太投机取巧了吧?这种方法总是可行的吗?
答案当然是肯定的!!!!
二、讨论
我们从 线性空间 的视角去重新审视这道题:
-
sin x \sin x sinx 和 cos x \cos x cosx 是线性无关的,不妨把它们看作是一个二维线性空间 Ω \Omega Ω 的一组基,该空间中任何一个点 P P P 都是 sin x \sin x sinx 和 cos x \cos x cosx 的线性函数,可以用这两个基的线性组合来表示。
点 P : f ( x ) = a sin x + b cos x = [ a b ] [ sin x cos x ] a , b ∈ R 点P: f(x) = a \sin x + b \cos x = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} \sin x \\ \cos x \end{bmatrix}\, \quad a,b \in \mathbb R 点P:f(x)=asinx+bcosx=[ab][sinxcosx]a,b∈R
( a b ) \begin{pmatrix} a & b \end{pmatrix} (ab) 称为点 P P P 在该空间中的坐标。向量 O P ⃗ \vec {OP} OP 可以表示为 [ a b ] T \begin{bmatrix} a & b \end{bmatrix}^T [ab]T -
线性空间 Ω \Omega Ω 中任一点 P P P 对应的函数 f ( x ) f(x) f(x) 在求导或积分(忽略自由常数项)后,仍是该空间中的点。
-
二维线性空间 Ω \Omega Ω 中的任意一个向量,总是可以分解为该空间中任意另外两个线性无关的向量的线性组合。
-
3 sin x + cos x sin x − cos x \frac{3\sin x+\cos x}{\sin x - \cos x} sinx−cosx3sinx+cosx 中的分子和分母都是线性空间 Ω \Omega Ω 的点(或者说向量)。
-
分母 sin x − cos x \sin x - \cos x sinx−cosx 与其导函数 cos x + sin x \cos x + \sin x cosx+sinx 线性无关。
根据以上讨论,分子一定可以表示为分母和分母导函数的线性组合:
3
sin
x
+
cos
x
=
A
(
sin
x
−
cos
x
)
+
B
(
sin
x
+
cos
x
)
3 \sin x + \cos x = A(\sin x - \cos x) + B (\sin x + \cos x)
3sinx+cosx=A(sinx−cosx)+B(sinx+cosx)
写成大家喜闻乐见的矩阵形式如下:
[
3
1
]
=
A
[
1
−
1
]
+
B
[
1
1
]
\begin{bmatrix} 3 \\ 1 \end{bmatrix} = A\begin{bmatrix} 1 \\ -1 \end{bmatrix} + B\begin{bmatrix} 1 \\ 1 \end{bmatrix}
[31]=A[1−1]+B[11]
或者写成这样的线性方程组:
[
1
1
−
1
1
]
[
A
B
]
=
[
3
1
]
\begin{bmatrix}1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}
[1−111][AB]=[31]
根据上面讨论的第3点,该方程组肯定有解。而且这个方程是非齐次的,所以只有唯一解。解得:
[
A
B
]
=
[
1
2
]
\begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}
[AB]=[12]
又把高数和线性代数串在一起了,是不是觉得很兴奋!数学本应该是如此有机一体的嘛!
三、推广
现在我们把结论做一个推广:
积分:
∫
A
sin
x
+
B
cos
x
C
sin
x
+
D
cos
x
d
x
=
∫
E
C
sin
x
+
D
cos
x
C
sin
x
+
D
cos
x
d
x
+
∫
F
C
cos
x
−
D
sin
x
C
sin
x
+
D
cos
x
d
x
=
E
x
+
F
ln
∣
C
sin
x
+
D
cos
x
∣
+
C
o
n
s
t
A
,
B
,
C
,
D
,
E
,
F
∈
R
\begin{aligned} \int \frac{A \sin x + B \cos x}{C \sin x + D \cos x}\, dx &= \int E\frac{C \sin x + D \cos x}{C \sin x + D \cos x} \,dx + \int F\frac{C \cos x - D \sin x}{C \sin x + D \cos x} \, dx \\ \\ &= Ex\,+\,F \ln |C \sin x + D \cos x| + Const \quad \quad A,B,C,D,E,F \in \mathbb R \end{aligned}
∫Csinx+DcosxAsinx+Bcosxdx=∫ECsinx+DcosxCsinx+Dcosxdx+∫FCsinx+DcosxCcosx−Dsinxdx=Ex+Fln∣Csinx+Dcosx∣+ConstA,B,C,D,E,F∈R
其中,满足:
[
C
−
D
D
C
]
[
E
F
]
=
[
A
B
]
\begin{bmatrix} C & -D \\D & C \end{bmatrix} \begin{bmatrix} E \\ F\end{bmatrix} = \begin{bmatrix} A \\ B\end{bmatrix}
[CD−DC][EF]=[AB]
[
E
F
]
=
[
C
−
D
D
C
]
−
1
[
A
B
]
=
1
C
2
+
D
2
[
C
D
−
D
C
]
[
A
B
]
\begin{aligned} \begin{bmatrix} E \\ F\end{bmatrix} &= \begin{bmatrix} C & -D \\D & C \end{bmatrix}^{-1} \begin{bmatrix} A \\ B\end{bmatrix} \\ \\ &= \frac{1}{C^2+D^2} \begin{bmatrix} C & D \\-D & C \end{bmatrix} \begin{bmatrix} A \\ B\end{bmatrix} \end{aligned}
[EF]=[CD−DC]−1[AB]=C2+D21[C−DDC][AB]
四、结语
数学真的很美妙~~~~~~
码字太累了,就写到这吧。其实还可以接着展开,进一步探讨更广义的函数空间的,比如所有的初等函数都处于一个空间内,空间的基可以是所有线性无关的基本初等函数。这样,空间一词仿佛就有了实感,而不再是干巴巴的数量关系。不过这可能都是更高深的话题了,对于工科考研而言,或许超纲?不过今天也没状态了,之后有人看的话再开个新坑吧。
亲爱的研友,你都看到这里了,如果这篇短文对你有帮助,不妨点个免费的赞呗!