【高数随笔】由一道三角函数积分引起的关于函数空间的思考

一、引言

今天遇到了这么一道积分题:
∫ 3 sin ⁡ x + cos ⁡ x sin ⁡ x − cos ⁡ x   d x \int \frac{3\sin x+\cos x}{\sin x - \cos x} \,dx sinxcosx3sinx+cosxdx
三角函数的分式,按顺序思考:1. 凑微分, 2. 化简成一次式,或可以直接积分/凑微分积分的形式, 3. 拆项,4. 和差化积,5. 万能代换。

万能代换自然是通解,在该题中,分子分母幂次相同,均为一次幂,用 t = tan ⁡ x 2 t=\tan\frac{x}{2} t=tan2x 代入后,化为有理积分自然能解,也不难。但这样还是有些繁琐。

参考答案是凑微分:
∫ 3 sin ⁡ x + cos ⁡ x sin ⁡ x − cos ⁡ x   d x = ∫ sin ⁡ x − cos ⁡ x sin ⁡ x − cos ⁡ x   d x + ∫ 2 ( cos ⁡ x + sin ⁡ x ) sin ⁡ x − cos ⁡ x   d x = ∫   d x + 2 ∫ d ( sin ⁡ x − cos ⁡ x ) sin ⁡ x − cos ⁡ x = x + 2 ln ⁡ ∣ sin ⁡ x − cos ⁡ x ∣ + C \begin{aligned} \int \frac{3\sin x+\cos x}{\sin x - \cos x} \,dx &= \int \frac{\sin x - \cos x}{\sin x - \cos x} \, dx + \int \frac{2(\cos x+\sin x)}{\sin x - \cos x} \,dx \\ \\ &= \int \,dx + 2 \int \frac{d(\sin x - \cos x)}{\sin x - \cos x} \\ \\ &= x + 2 \ln|\sin x - \cos x| + C \end{aligned} sinxcosx3sinx+cosxdx=sinxcosxsinxcosxdx+sinxcosx2(cosx+sinx)dx=dx+2sinxcosxd(sinxcosx)=x+2lnsinxcosx+C

可能有同学会觉得很奇妙——啊这是怎么能想到的?我咋看不出来可以这么凑呢?这也太投机取巧了吧?这种方法总是可行的吗?

答案当然是肯定的!!!!

二、讨论

我们从 线性空间 的视角去重新审视这道题:

  1. sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx 是线性无关的,不妨把它们看作是一个二维线性空间 Ω \Omega Ω 的一组基,该空间中任何一个点 P P P 都是 sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx 的线性函数,可以用这两个基的线性组合来表示。
    点 P : f ( x ) = a sin ⁡ x + b cos ⁡ x = [ a b ] [ sin ⁡ x cos ⁡ x ]   a , b ∈ R 点P: f(x) = a \sin x + b \cos x = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} \sin x \\ \cos x \end{bmatrix}\, \quad a,b \in \mathbb R P:f(x)=asinx+bcosx=[ab][sinxcosx]a,bR
    ( a b ) \begin{pmatrix} a & b \end{pmatrix} (ab) 称为点 P P P 在该空间中的坐标。向量 O P ⃗ \vec {OP} OP 可以表示为 [ a b ] T \begin{bmatrix} a & b \end{bmatrix}^T [ab]T

  2. 线性空间 Ω \Omega Ω 中任一点 P P P 对应的函数 f ( x ) f(x) f(x) 在求导或积分(忽略自由常数项)后,仍是该空间中的点。

  3. 二维线性空间 Ω \Omega Ω 中的任意一个向量,总是可以分解为该空间中任意另外两个线性无关的向量的线性组合。

  4. 3 sin ⁡ x + cos ⁡ x sin ⁡ x − cos ⁡ x \frac{3\sin x+\cos x}{\sin x - \cos x} sinxcosx3sinx+cosx 中的分子和分母都是线性空间 Ω \Omega Ω 的点(或者说向量)。

  5. 分母 sin ⁡ x − cos ⁡ x \sin x - \cos x sinxcosx 与其导函数 cos ⁡ x + sin ⁡ x \cos x + \sin x cosx+sinx 线性无关。

根据以上讨论,分子一定可以表示为分母和分母导函数的线性组合:
3 sin ⁡ x + cos ⁡ x = A ( sin ⁡ x − cos ⁡ x ) + B ( sin ⁡ x + cos ⁡ x ) 3 \sin x + \cos x = A(\sin x - \cos x) + B (\sin x + \cos x) 3sinx+cosx=A(sinxcosx)+B(sinx+cosx)
写成大家喜闻乐见的矩阵形式如下:
[ 3 1 ] = A [ 1 − 1 ] + B [ 1 1 ] \begin{bmatrix} 3 \\ 1 \end{bmatrix} = A\begin{bmatrix} 1 \\ -1 \end{bmatrix} + B\begin{bmatrix} 1 \\ 1 \end{bmatrix} [31]=A[11]+B[11]
或者写成这样的线性方程组:
[ 1 1 − 1 1 ] [ A B ] = [ 3 1 ] \begin{bmatrix}1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} [1111][AB]=[31]
根据上面讨论的第3点,该方程组肯定有解。而且这个方程是非齐次的,所以只有唯一解。解得:
[ A B ] = [ 1 2 ] \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} [AB]=[12]

又把高数和线性代数串在一起了,是不是觉得很兴奋!数学本应该是如此有机一体的嘛!

三、推广

现在我们把结论做一个推广:
积分:
∫ A sin ⁡ x + B cos ⁡ x C sin ⁡ x + D cos ⁡ x   d x = ∫ E C sin ⁡ x + D cos ⁡ x C sin ⁡ x + D cos ⁡ x   d x + ∫ F C cos ⁡ x − D sin ⁡ x C sin ⁡ x + D cos ⁡ x   d x = E x   +   F ln ⁡ ∣ C sin ⁡ x + D cos ⁡ x ∣ + C o n s t A , B , C , D , E , F ∈ R \begin{aligned} \int \frac{A \sin x + B \cos x}{C \sin x + D \cos x}\, dx &= \int E\frac{C \sin x + D \cos x}{C \sin x + D \cos x} \,dx + \int F\frac{C \cos x - D \sin x}{C \sin x + D \cos x} \, dx \\ \\ &= Ex\,+\,F \ln |C \sin x + D \cos x| + Const \quad \quad A,B,C,D,E,F \in \mathbb R \end{aligned} Csinx+DcosxAsinx+Bcosxdx=ECsinx+DcosxCsinx+Dcosxdx+FCsinx+DcosxCcosxDsinxdx=Ex+FlnCsinx+Dcosx+ConstA,B,C,D,E,FR
其中,满足:
[ C − D D C ] [ E F ] = [ A B ] \begin{bmatrix} C & -D \\D & C \end{bmatrix} \begin{bmatrix} E \\ F\end{bmatrix} = \begin{bmatrix} A \\ B\end{bmatrix} [CDDC][EF]=[AB] [ E F ] = [ C − D D C ] − 1 [ A B ] = 1 C 2 + D 2 [ C D − D C ] [ A B ] \begin{aligned} \begin{bmatrix} E \\ F\end{bmatrix} &= \begin{bmatrix} C & -D \\D & C \end{bmatrix}^{-1} \begin{bmatrix} A \\ B\end{bmatrix} \\ \\ &= \frac{1}{C^2+D^2} \begin{bmatrix} C & D \\-D & C \end{bmatrix} \begin{bmatrix} A \\ B\end{bmatrix} \end{aligned} [EF]=[CDDC]1[AB]=C2+D21[CDDC][AB]

四、结语

数学真的很美妙~~~~~~

码字太累了,就写到这吧。其实还可以接着展开,进一步探讨更广义的函数空间的,比如所有的初等函数都处于一个空间内,空间的基可以是所有线性无关的基本初等函数。这样,空间一词仿佛就有了实感,而不再是干巴巴的数量关系。不过这可能都是更高深的话题了,对于工科考研而言,或许超纲?不过今天也没状态了,之后有人看的话再开个新坑吧。

亲爱的研友,你都看到这里了,如果这篇短文对你有帮助,不妨点个免费的赞呗!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值