由有理函数的广义积分引入,谈谈复变函数论中的留数

由有理函数的广义积分引入,谈谈复变函数论中的留数

∫ − ∞ ∞ 1 1 − x 6 d x \int_{-\infty}^\infty \frac{1}{1-x^6}dx 1x61dx
  没接触过复变函数的童鞋们们遇到这道积分,多半是将分母因式分解并展开成几个不同的分式分别积分。这种方法虽然可行,但却非常繁琐,需要解题者对此种方法十分熟练。下面我们先用这种方法进行积分。接着再通过介绍复变函数中的留数,对此题作出十分简便的解答。

经典方法
  • 将被积函数分解
    (1) 1 1 − x 6 = A 1 − x + B 1 + x + C x + D x 2 + x + 1 + E x + F x 2 − x + 1 \frac{1}{1-x^6} = \frac{A}{1-x} + \frac{B}{1+x} + \frac{Cx+D}{x^2+x+1} + \frac{Ex+F}{x^2-x+1}\tag1 1x61=1xA+1+xB+x2+x+1Cx+D+x2x+1Ex+F(1)
    式(1) × (x-1),再将 x=1 代入,得 A = 1/6;
    式(1) × (x+1),再将 x=-1 代入,得 B = 1/6;
    式(1) 中,将 x= 0 代入,得 D+F = 2/3;
    接下来再计算得到 D = F = 1/3,C = 1/6,D = -1/6。
    以上计算步骤中必须小心,一步错则全盘皆输。
    (2) I = ∫ − ∞ ∞ 1 1 − x 6 d x = 1 6 ∫ − ∞ ∞ ( 1 1 − x + 1 1 + x + x + 2 x 2 + x + 1 + − x + 2 x 2 − x + 1 ) d x I=\int_{-\infty}^\infty \frac{1}{1-x^6}dx=\frac{1}{6}\int_{-\infty}^{\infty}(\frac{1}{1-x}+\frac{1}{1+x}+\frac{x+2}{x^2+x+1}+\frac{-x+2}{x^2-x+1})dx\tag2 I=1x61dx=61(1x1+1+x1+x2+x+1x+2+x2x+1x+2)dx(2)
  • 分别计算各个分式的积分
    ∫ − ∞ ∞ 1 1 − x d x = lim ⁡ δ → 0 + a n d ξ → + ∞ ( ∫ − ξ 1 − δ 1 1 − x d x + ∫ 1 + δ ξ 1 1 − x d x ) = lim ⁡ δ → 0 + a n d ξ → + ∞ ( ln ⁡ 1 + ξ δ + ln ⁡ − δ 1 − ξ ) = lim ⁡ ξ → + ∞ ln ⁡ 1 + ξ ξ − 1 = 0 \int_{-\infty}^{\infty}\frac{1}{1-x}dx=\lim_{δ→0+ and ξ→+\infty}(\int_{-ξ}^{1-δ}\frac{1}{1-x}dx+\int_{1+δ}^{ξ}\frac{1}{1-x}dx)=\lim_{δ→0+ and ξ→+\infty}(\ln{\frac{1+ξ}{δ}}+\ln{\frac{-δ}{1-ξ}})\\=\lim_{ξ→+\infty}\ln\frac{1+ξ}{ξ-1}=0 1x1dx=δ0+andξ+lim(ξ1δ1x1dx+1+δξ1x1dx)=δ0+andξ+lim(lnδ1+ξ+ln1ξδ)=ξ+limlnξ11+ξ=0
    (3) ∫ − ∞ ∞ 1 1 + x d x = − ∫ − ∞ ∞ 1 1 − u d u = 0      ( 令 x = − u ) \int_{-\infty}^{\infty}\frac{1}{1+x}dx=-\int_{-\infty}^{\infty}\frac{1}{1-u}du=0~~~~(令x=-u)\tag3 1+x1dx=1u1du=0    (x=u)(3)
    上式亦可从对称性以及奇偶性的角度分析:
    由于 f ( x ) = 1 x f(x)=\frac{1}{x} f(x)=x1是奇函数,故而 ∫ − ∞ ∞ 1 x d x = 0 \int_{-\infty}^{\infty}\frac{1}{x}dx=0 x1dx=0,而 1 x ± 1 \frac{1}{x\pm1} x±11 1 x \frac{1}{x} x1平移后的函数,\积分上下限随着平移,积分值不变。而 ± ∞ ± 1 \pm\infty\pm1 ±±1依旧是 ± ∞ \pm\infty ±
    (4) ∫ − ∞ ∞ x + 2 x 2 + x + 1 d x = ∫ − ∞ ∞ x + 1 2 ( x + 1 2 ) 2 + 3 4 d x + 3 2 ∫ − ∞ ∞ 1 ( x + 1 2 ) 2 + 3 4 d x = 1 2 ∫ − ∞ ∞ 1 ( x + 1 2 ) 2 + 3 4 d [ ( x + 1 2 ) 2 + 3 4 ] + 3 2 × 2 3 π = 1 2 × 0 + 3 π = 3 π \int_{-\infty}^{\infty}\frac{x+2}{x^2+x+1}dx=\int_{-\infty}^{\infty}\frac{x+\frac{1}{2}}{(x+\frac{1}{2})^2+\frac{3}{4}}dx+\frac{3}{2}\int_{-\infty}^{\infty}\frac{1}{(x+\frac{1}{2})^2+\frac{3}{4}}dx\\=\frac{1}{2}\int_{-\infty}^{\infty}\frac{1}{(x+\frac{1}{2})^2+\frac{3}{4}}d[(x+\frac{1}{2})^2+\frac{3}{4}]+\frac{3}{2}\times\frac{2}{\sqrt3}\pi\\=\frac{1}{2}\times0+\sqrt{3}\pi=\sqrt{3}\pi\tag4 x2+x+1x+2dx=(x+21)2+43x+21dx+23(x+21)2+431dx=21(x+21)2+431d[(x+21)2+43]+23×3 2π=21×0+3 π=3 π(4)
    同理可得: (5) ∫ − ∞ ∞ − x + 2 x 2 − x + 1 d x = 3 π \int_{-\infty}^{\infty}\frac{-x+2}{x^2-x+1}dx=\sqrt{3}\pi\tag5 x2x+1x+2dx=3 π(5)(其实不过就是把③中的x换成-x而已,结果一致)
    最终有: (6) I = ∫ − ∞ ∞ 1 1 − x 6 d x = 1 6 ( 0 + 0 + 3 π + 3 π ) = π 3 I=\int_{-\infty}^{\infty}\frac{1}{1-x^6}dx=\frac{1}{6}(0+0+\sqrt{3}\pi+\sqrt{3}\pi)=\frac{\pi}{\sqrt{3}}\tag6 I=1x61dx=61(0+0+3 π+3 π)=3 π(6)
      到这里,我们可以看到,这个积分形式是如此的简洁,却用了如此繁琐丑陋的有理函数积分方法求解,数学之美焉存?接下来本文将介绍复变函数中的留数,用求留数的方法轻松、简洁而美丽地解出此积分!Let’s go!
留数
  • show time!
      这里直接上解法,先让童鞋们对使用留数求解此积分时的简洁与美丽有个直观的认识,背景知识以及相关定理的推导将在下一篇文章中给出。想了解更多的童鞋可以自行找相关资料学习。
    f ( x ) = 1 1 − x 6 f(x)=\frac{1}{1-x^6} f(x)=1x61中的自变量 x ( x ∈ R ) x(x\in R) x(xR)换成复数 z ( z ∈ C ) z(z\in C) z(zC) f ( z ) = 1 1 − z 6 f(z)=\frac{1}{1-z^6} f(z)=1z61即为一复变函数。
    1 − z 6 = 0 1-z^6=0 1z6=0,即 z 6 = e i ⋅ 0 z^6=e^{i\cdot0} z6=ei0,可得 z = e i 0 + 2 k π 6 , k = 0 , 1 , 2 , 3 , 4 , 5 , z=e^{i\frac{0+2k\pi}{6}},k=0,1,2,3,4,5, z=ei60+2kπ,k=0,1,2,3,4,5这些是f函数f(z)的奇点(后文会介绍到这些是f(z)的一阶极点)
    则有:
    f ( z ) = 1 1 − z 6 = − 1 ( z − 1 ) ( z − e i π 3 ) ( z − e i 2 π 3 ) ( z + 1 ) ( z − e i 4 π 3 ) ( z − e i 5 π 3 ) f(z)=\frac{1}{1-z^6}=-\frac{1}{(z-1)(z-e^{i\frac{\pi}{3}})(z-e^{i\frac{2\pi}{3}})(z+1)(z-e^{i\frac{4\pi}{3}})(z-e^{i\frac{5\pi}{3}})} f(z)=1z61=(z1)(zei3π)(zei32π)(z+1)(zei34π)(zei35π)1 (7) I = ∫ − ∞ ∞ 1 1 − x 6 d x = 2 π i [ R e s   f ( z ) ∣ z = e i π 3 + R e s   f ( z ) ∣ z = e i 2 π 3 ] + π i [ R e s   f ( z ) ∣ z = 1 + R e s   f ( z ) ∣ z = − 1 ] = 2 π i [ 1 ( 1 − z 6 ) ′ ∣ z = e i π 3 + 1 ( 1 − z 6 ) ′ ∣ z = e i 2 π 3 ] + π i [ 1 ( 1 − z 6 ) ′ ∣ z = 1 + 1 ( 1 − z 6 ) ′ ∣ z = − 1 ] = − 2 π i 6 [ 1 z 5 ∣ z = e i π 3 + 1 z 5 ∣ z = e i 2 π 3 ] − π i 6 [ 1 z 5 ∣ z = 1 + 1 z 5 ∣ z = − 1 ]                                         = − π i 3 ( 1 2 + 3 2 i − 1 2 + 3 2 i ) − π i 6 ( 1 − 1 )                                                            = π 3                                                                                                                             I=\int_{-\infty}^{\infty}\frac{1}{1-x^6}dx=2\pi i[Res~f(z)|_{z=e^{i\frac{\pi}{3}}}+Res~f(z)|_{z=e^{i\frac{2\pi}{3}}}]+\pi i[Res~f(z)|_{z=1}+Res~f(z)|_{z=-1}]\\=2\pi i[\frac{1}{(1-z^6)^{'}}|_{z=e^{i\frac{\pi}{3}}}+\frac{1}{(1-z^6)^{'}}|_{z=e^{i\frac{2\pi}{3}}}]+\pi i[\frac{1}{(1-z^6)^{'}}|_{z=1}+\frac{1}{(1-z^6)^{'}}|_{z=-1}]\\=-\frac{2\pi i}{6}[\frac{1}{z^5}|_{z=e^{i\frac{\pi}{3}}}+\frac{1}{z^5}|_{z=e^{i\frac{2\pi}{3}}}]-\frac{\pi i}{6}[\frac{1}{z^5}|_{z=1}+\frac{1}{z^5}|_{z=-1}]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\=-\frac{\pi i}{3}(\frac{1}{2}+\frac{\sqrt{3}}{2}i-\frac{1}{2}+\frac{\sqrt3}{2}i)-\frac{\pi i}{6}(1-1)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\\=\frac{\pi}{\sqrt3}\tag7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I=1x61dx=2πi[Res f(z)z=ei3π+Res f(z)z=ei32π]+πi[Res f(z)z=1+Res f(z)z=1]=2πi[(1z6)1z=ei3π+(1z6)1z=ei32π]+πi[(1z6)1z=1+(1z6)1z=1]=62πi[z51z=ei3π+z51z=ei32π]6πi[z51z=1+z51z=1]                                       =3πi(21+23 i21+23 i)6πi(11)                                                          =3 π                                                                                                                           (7)
    上式中 R e s   f ( z ) ∣ z = z 0 Res~f(z)|_{z=z_0} Res f(z)z=z0表示 f ( z ) f(z) f(z) z = z 0 z=z_0 z=z0处的留数,至于为何选 e i π 3 、 e i 2 π 3 e^{i\frac{\pi}{3}}、e^{i\frac{2\pi}{3}} ei3πei32π和1、-1,而不选 e i 4 π 3 e^{i\frac{4\pi}{3}} ei34π e i 5 π 3 e^{i\frac{5\pi}{3}} ei35π,是因为 e i π 3 e^{i\frac{\pi}{3}} ei3π e i 2 π 3 e^{i\frac{2\pi}{3}} ei32π在复平面的上半平面上,1、-1在复平面的实轴上,而 e i 4 π 3 e^{i\frac{4\pi}{3}} ei34π e i 5 π 3 e^{i\frac{5\pi}{3}} ei35π在复平面的下半平面上。具体原因将在下一篇文章详细介绍和推导。
结语

  怎么样,留数这个东西是不是很新奇、很简洁美丽!下一篇文章中,我将介绍复变函数的基本知识、重要定理,详细介绍留数相关定理,推导出上文中第二种解法中的依据。敬请期待。

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值