仅作为记录,大佬请跳过。
参考
感谢大佬博主文章
实例一完整代码
简介:输入了这个正弦曲线,输出一个移位的正弦曲线
代码:
import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 5))
# how many time steps/data pts are in one batch of data
seq_length = 20
# generate evenly spaced data pts
time_steps = np.linspace(0, np.pi, seq_length + 1)
data = np.sin(time_steps)
data.resize((seq_length + 1, 1)) # size becomes (seq_length+1, 1), adds an input_size dimension
x = data[:-1] # all but the last piece of data
y = data[1:] # all but the first
# # display the data
# plt.plot(time_steps[1:], x, 'r.', label='input, x') # x
# plt.plot(time_steps[1:], y, 'b.', label='target, y') # y
#
# plt.legend(loc='best')
# plt.show()
class RNN(nn.Module):
def __init__(self, input_size, output_size, hidden_dim, n_layers):
super(RNN, self).__init__()
self.hidden_dim = hidden_dim
# define an RNN with specified parameters
# batch_first means that the first dim of the input and output will be the batch_size
self.rnn = nn.RNN(input_size, hidden_dim, n_layers, batch_first=True)
# last, fully-connected layer
self.fc = nn.Linear(hidden_dim, output_size)
def forward(self, x, hidden):
# x (batch_size, seq_length, input_size)
# hidden (n_layers, batch_size, hidden_dim)
# r_out (batch_size, time_step, hidden_size)
batch_size = x.size(0)
# get RNN outputs
r_out, hidden = self.rnn(x, hidden)
# shape output to be (batch_size*seq_length, hidden_dim)
r_out = r_out.view(-1, self.hidden_dim)
# get final output
output = self.fc(r_out)
return output, hidden
# **********************#
# 检查输入和输出维度
# **********************#
# test that dimensions are as expected
test_rnn = RNN(input_size=1, output_size=1, hidden_dim=10, n_layers=2)
# generate evenly spaced, test data pts
time_steps = np.linspace(0, np.pi, seq_length)
data = np.sin(time_steps)
data.resize((seq_length, 1))
test_input = torch.Tensor(data).unsqueeze(0) # give it a batch_size of 1 as first dimension
print('Input size: ', test_input.size())
# test out rnn sizes
test_out, test_h = test_rnn(test_input, None)
print('Output size: ', test_out.size())
print(

这篇博客介绍了如何使用PyTorch构建和训练两个RNN模型。第一个模型用于根据输入的正弦曲线数据预测移位后的正弦曲线,第二个模型则用于识别姓名的语言。在训练过程中,详细展示了数据预处理、模型定义、损失函数、优化器以及训练过程。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



