torch.nn的loss实例 和 torch.randn(100, 100)的随机种子设置

仅作为记录,大佬请跳过。

直接上程序

import torch
from torch.autograd import Variable
loss_f = torch.nn.MSELoss()  #不用传入任何参数

torch.manual_seed(0)
# torch.cuda.manual_seed(0)
'''随机生成两个维度都是(100,100)的参数'''
x = Variable(torch.randn(100, 100))
y = Variable(torch.randn(100, 100))

loss = loss_f(x, y)  #在使用实例时需要输入两个维度一样的参数方可进行计算

loss_f2 = torch.nn.L1Loss()
loss2 = loss_f2(x, y)

print(loss)
print(loss2)

展示

在这里插入图片描述
参考

传送门


torch.randn(100, 100)的随机种子设置

在这里插入图片描述
参考

传送门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值