SPSS分析基础——T检验
推断统计是根据样本数据推断总体特征的方法。 参数检验是推断统计的重要组成部分。
总体分布已知情况下为参数检验;总体分布未知的情况下,为非参数检验。
SPSS的均值过程是描述和分析尺度变量(Scale)的一种有用的方法,可以获取要分析变量的许多中心趋势和离散趋势的统计指标,同时可以对不同组别或者交叉组别进行比较。其中,t检验应用于研究单样本均值的比较和两个均值的比较。
T检验,主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。
SPSS中t检验有三类可选:
- 单样本t检验:将一个变量的平均值与已知值或假设值进行比较;
- 独立样本t检验(双样本t检验):比较两组个案中一个变量的平均值;
- 成对样本的t检验(相关t检验):比较单个组中两个变量的平均值。
单样本的T检验
以SPSS自带数据范例sample中的brakes.sav为例,进行单样本的T检验分析。
数据介绍(brakes.sav)
该假设数据文件涉及某生产高性能汽车盘式制动器的工厂的质量控制。该数据文件包含对 8 台专用机床中每一台的 16 个盘式制动器的直径测量。盘式制动器的目标直径为 322 毫米。
数据分析
我们需要对各个机器分别进行检验其是否符合标准,因此需要根据机器拆分数据文件。
数据 > 拆分文件 > 比较组<