DEEP LEARNING-BASED CAROTID PLAQUE SEGMENTATION FROM B-MODE-基于深度学习的B型超声图像颈动脉斑块分割
文章目录
摘要
TPA:颈动脉超声测量总斑块面积;斑块面积可以显示颈动脉狭窄程度,有深远意义但是需要边界分割。手工分割又耗费时间所以要开发一种自动分割斑块分割方法。
使用纵向颈动脉超声图像分割斑块。
论文采用修改的U-Net网络
引言
描述一些颈动脉粥样硬化,中风的危害性,
许多研究偏向于测量IMT:
1.描绘内膜腔和中膜-内膜边界并测量颈总动脉中这些边界之间的厚度来量化颈动脉内膜中层厚度(IMT);
2.测量颈动脉中的总斑块面积(TPA)是量化动脉粥样硬化负荷的方法。本文通过追踪所有斑块的边界并将它们的面积相加来测量TPA;
许多研究只是检测和分析IMT,没有分割颈动脉板块边界用于PA和TPA测量。
先前工作:
使用3D U-Net算法从颈总动脉3D超声图像生成总斑块体积,但是此方法需要三维超声采集方法,在许多诊断中心不可用。