论文阅读-颈动脉超声图像斑块分割

该研究提出了一种改进的U-Net模型,用于自动分割颈动脉B型超声图像中的斑块,以精确测量总斑块面积(TPA)。通过与手动分割的高一致性验证,该方法在两个独立数据集上的表现良好,提供了一种有效且时间节省的斑块分割工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DEEP LEARNING-BASED CAROTID PLAQUE SEGMENTATION FROM B-MODE-基于深度学习的B型超声图像颈动脉斑块分割


摘要

TPA:颈动脉超声测量总斑块面积;斑块面积可以显示颈动脉狭窄程度,有深远意义但是需要边界分割。手工分割又耗费时间所以要开发一种自动分割斑块分割方法。
使用纵向颈动脉超声图像分割斑块。
论文采用修改的U-Net网络
在这里插入图片描述

引言

描述一些颈动脉粥样硬化,中风的危害性,

许多研究偏向于测量IMT:

1.描绘内膜腔和中膜-内膜边界并测量颈总动脉中这些边界之间的厚度来量化颈动脉内膜中层厚度(IMT);
2.测量颈动脉中的总斑块面积(TPA)是量化动脉粥样硬化负荷的方法。本文通过追踪所有斑块的边界并将它们的面积相加来测量TPA;

许多研究只是检测和分析IMT,没有分割颈动脉板块边界用于PA和TPA测量。

先前工作:

使用3D U-Net算法从颈总动脉3D超声图像生成总斑块体积,但是此方法需要三维超声采集方法,在许多诊断中心不可用。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值