基于边界网络的超声图像乳腺肿瘤自动分割

基于边界网络的超声图像乳腺肿瘤自动分割


Boundary-oriented Network for Automatic Breast Tumor Segmentation in Ultrasound Images

摘要

乳腺癌被认为是最常见的癌症。利用超声图像定位乳腺肿瘤是一种重要的临床诊断方法。然而,由于超声图像中的超声伪影、低对比度和复杂的肿瘤形状,乳腺肿瘤的准确分割仍然是一个悬而未决的问题。为了解决这个问题,我们提出了一个边界导向网络(BO-Net),用于增强超声图像中的乳腺肿瘤分割。BO-Net从两个方面提高了肿瘤分割性能。首先,设计了一个面向边界的模块(BOM),通过学习额外的乳腺肿瘤边界图来捕获乳腺肿瘤的弱边界。其次,我们专注于增强的特征提取,它利用Atrous空间金字塔池(ASPP)模块和挤压和激励(SE)块,以获得多尺度和有效的特征信息。我们在两个公共数据集上评估我们的网络:数据集B和BUSI。对于数据集B,我们的网络在Dice中达到0.8685,在Jaccard中达到0.7846,在Precision中达到0.8604,在Recall中达到0.9078,在Specificity中达到0.9928。对于BUSI数据集,我们的网络在Dice中达到0.7954,在Jaccard中达到0.7033,在Precision中达到0.8275,在Recall中达到0.8251,在Specificity中达到0.9814。实验结果表明,BO-Net算法在超声图像乳腺肿瘤分割中的效果优于现有的分割方法。它表明,专注于边界和特征增强创建更有效和鲁棒的乳腺肿瘤分割。

介绍

总述问题
根据世界卫生组织公布的国际癌症研究机构(IARC)2020 - 2021双年度的关键数据,全球新增乳腺癌病例2,261,419例。为了提高患者的生存率,需要早期发现乳腺癌。乳腺超声(BUS)是一种可以帮助医生评估、诊断和治疗疾病的医疗工具。2与X射线成像不同,BUS避免了电离辐射暴露,并且成本较低。3但是,由于复杂性和斑点噪声的存在,依赖BUS图像诊断乳腺肿瘤需要经验丰富且训练有素的医生。因此,自动且准确地分割乳腺肿瘤区域是有用的,这可以帮助医生提高诊断灵敏度和特异性。由于BUS图像对比度低、散斑噪声强、边界模糊等特点,乳腺肿瘤的准确分割成为一项具有挑战性的任务。
传统的方法
图1中有一些总线示例。在过去的几十年中,已经提出了许多算法来分割BUS图像,这些算法可以大致分为四类,包括基于强度的,基于能量泛函的,基于聚类的,和基于深度学习的基于强度的,基于能量泛函的,基于聚类的基于强度的方法通过像素强度的区域变化来检测BUS图像中的异常区域,包括基于阈值的,基于4,5分水岭的,6-8和区域增长方法。9,10基于能量函数方法包括活动轮廓模型11 -13和基于图形的分割模型5,14,15。Rodtake等人13开发了一种初始化方法,并将活动轮廓与水平集方法相结合。Zhou等人15开发了一种使用高斯滤波、直方图均衡化、均值漂移和图形切割的半自动BUS图像分割。基于排序的方法16 -19属于机器学习算法。Moon等人18提出了一种基于定量组织聚类算法的计算机辅助检测系统,以识别潜在肿瘤。Samundeeswari等人将传统的K-Means算法与蚁群算法和正则化参数相结合,以最大限度地保持边界。然而,所有上述算法都存在一些局限性。这些算法依赖于手工特征和人工参与,不能自动分割医学图像。此外,它们中的大多数具有有限的分割能力,不能满足临床要求。
深度学习的方法
与传统的图像处理算法不同,基于深度学习的方法使用网络模型来学习图像数据集,直接获取高级抽象特征,无需人工干预。由于上级的性能,在医学图像分割中逐渐发挥了巨大的作用。在基于深度学习的方法中,20-30卷积神经网络(CNN)20-25在提取图像特征方面是智能的。Long等人提出了一种全卷积网络(FCN),它通过对每个像素进行分类来实现图像的语义分割。而FCN的上采样结果相对模糊,对图像细节不敏感,导致分割结果不太精细。Ronneberger等人25提出了基于FCN的U-Net,它通过跳过连接将高级和低级语义信息结合起来,以实现更准确的像素定位。雅普等人26使用深度学习方法进行乳腺超声病变检测,并研究了三种不同的方法:基于补丁的LeNet、U-Net和FCNAlexNet。Hu等人27将扩张的FCN与基于相位的活动轮廓模型相结合,而Wang等人29开发了一种新的CNN,具有粗到细的特征融合,用于BUS图像分割。虽然这些基于CNN的方法提高了BUS图像分割的性能,但BUS图像中仍然存在对比度低和灰度不均匀的问题。
专注于自身问题的
为了提高分割预测结果的准确性,许多学者考虑消除模糊区域的边界泄漏31 -34,并加强网络特征映射中多尺度语义信息的融合35 -43。Xu et al.32设计了一个边界注意力引导模块,以在边界引导网络中学习更强大的分割特征,而Wu et al.34提出了一个基于FPN的边界引导多尺度网络,以提高BUS图像分割的性能。此外,Atrous Spatial Pyramid Pooling(ASPP)模块是在DeepLabv 235网络中提出的,Chen等人在DeepLabv 336和DeepLabv 3 +37中进行了改进,以不同的采样率对Atrous卷积进行采样。它能够在多个尺度下捕获图像的上下文信息,以确保特征图的准确性。Wu等人38采用DenseNet和ASPP模块用于超声图像。挤压和激发(SE)块由Hu等人提出。40在SE网络中控制尺度的大小,以增强重要特征并削弱不重要的特征,从而使提取的特征更具方向性。Rundo等人41将SE块纳入U-Net。然而,这些方法是稍微片面的,集中在多个特征之间的融合或加强弱边界的提取。在这方面,我们设计了一个网络,巧妙地统一了上述方法,不仅考虑嵌入边界方向模块来增强弱边界的提取,而且还考虑了多层次的特征融合。
本文在U-Net框架的基础上,提出了一种新的自动边界定向网络(BO-Net)用于BUS图像分割。由于乳腺肿瘤形状多变,超声图像对比度低,肿瘤边界不易识别。为了解决这个问题,我们设计了面向边界的模块(BOM),通过学习乳腺肿瘤区域的边界图来捕获弱边界。与其他医学图像相比,BUS图像的高噪声使得特征提取困难,因此我们采用ASPP模块和SE模块来提取有效的特征。本文的主要贡献如下:
(1)BOM能够学习更多的乳腺肿瘤边界图,补充了U-Net框架中忽略的边界细节。
(2)为了提高特征的有效性,我们用ASPP代替了U-Net中的过渡层,以捕获更丰富的多尺度特征信息。在编码器卷积后的跳跃连接中加入SE块,自适应地提取相关特征,抑制无关特征。
(3)我们在两个公共数据集上进行了实验。结果表明,我们的网络是上级的最先进的方法BUS图像肿瘤分割。

实验注意细节

1.实验数据
少的时候使用K-折交叉验证,一般四折或者五折
多的时候,4:1或者3:1
2.常用的公共数据集
BUSI
OASBUD
dataset B

  • 37
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值