Face Recognition 人脸辨识 Python 教学【python】

人脸辨识在 Computer Vision 中一直是很火热的话题,也是目前广为人知的一项技术。本质上分为 Face Verification、Face Recognition:前者为验证两张人脸是否为同一个人,属于一对一的过程;后者则是从数据库里辨识出相同的人脸,属于一对多的过程。

本文将要使用 Python 来进行人脸辨识的实作,过程分为几个阶段:

  • Face Detection
  • Face Align
  • Feature extraction
  • Create Database
  • Face Recognition

首先安装相关 library

$ pip install scikit-learn
$ pip install onnxruntime

Face Detection

这部分要进行人脸侦测,可以使用 Python API MTCNNRetinaFace,这边示范使用 RetinaFace 来进行侦测。

  • 安裝 RetinaFace
$ pip install retinaface
  • 侦测
    接着就可以来侦测人脸啦~输出会有预测框左上角跟右下角、两个眼睛、鼻子、嘴巴两边的座标值
import cv2
from retinaface import RetinaFace

detector = RetinaFace(quality="normal")
img_path = '001.jpg'
img_bgr = cv2.imread(img_path, cv2.IMREAD_COLOR)
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
detections = detector.predict(img_rgb)
print(detections)

img_result = detector.draw(img_rgb, detections)
img = cv2.cvtColor(img_result, cv2.COLOR_RGB2BGR)
cv2.imshow("windows", img)
key = cv2.waitKey()
if key == ord("q"):
   print("exit")

cv2.destroyWindow("windows")
# output[{‘x1’: 243, ‘y1’: 142, ‘x2’: 557, ‘y2’: 586, ‘left_eye’: (303, 305), ‘right_eye’: (431, 346), ‘nose’: (305, 403), ‘left_lip’: (272, 468), ‘right_lip’: (364, 505)}]

若在使用 RetinaFace 的时候,出现以下错误

有可能是因为无法导入 shapely.geometry 模块的关系,因此要先去下载 Shapely package,下载网址 → 🔗

下载完后再执行以下指令

$ pip install <your Shapely package path>

测试是否安装成功

$ python
>>> from shapely.geometry 
import Polygon

Face Align

这部分要来将人脸特征点进行对齐,需要先定义对齐的座标,在 onnx arcface_inference.ipynb 里的 Preprocess images 中可以看到。

接着就用 skimage 套件 transform.SimilarityTransform() 得到要变换的矩阵,然后进行对齐。

import cv2
from retinaface import RetinaFace
import numpy as np
from skimage import transform as trans

src = np.array([
   [30.2946, 51.6963],
   [65.5318, 51.5014],
   [48.0252, 71.7366],
   [33.5493, 92.3655],
   [62.7299, 92.2041]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前端仙人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值