多分类计算混淆矩阵并绘图

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import itertools

# 真实类别和模型预测的类别
true_labels = [2, 0, 2, 2, 0, 1]
predicted_labels = [2, 0, 2, 2, 1, 2]

# 计算混淆矩阵
confusion = confusion_matrix(true_labels, predicted_labels)

# 定义类别标签
class_names = ['Class 0', 'Class 1', 'Class 2']

# 创建混淆矩阵图像
plt.figure(figsize=(8, 6))
plt.imshow(confusion, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('混淆矩阵')
plt.colorbar()

tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names, rotation=45)
plt.yticks(tick_marks, class_names)

thresh = confusion.max() / 2.0
for i, j in itertools.product(range(confusion.shape[0]), range(confusion.shape[1)):
    plt.text(j, i, format(confusion[i, j], 'd'), horizontalalignment="center", color="white" if confusion[i, j] > thresh else "black")

plt.ylabel('真实类别')
plt.xlabel('预测类别')
plt.tight_layout()

plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值