【数据处理】Numpy.random.seed()的用法

本文详细解释了如何使用numpy.random.seed()确保随机数生成的可重复性,并通过实例对比展示了不同场景下随机数生成的区别。
该文章已生成可运行项目,

       刚开始看到numpy.random.seed(0)这个用法看不太懂,尤其是seed()括号里的数字总是不同时,更是懵逼。

类似的取随机数的还有这个:【数据处理】numpy.random.RandomState的用法

其实,设置seed()里的数字就相当于设置了一个盛有随机数的“聚宝盆”,一个数字代表一个“聚宝盆”,当我们在seed()的括号里设置相同的seed,“聚宝盆”就是一样的,那当然每次拿出的随机数就会相同(不要觉得就是从里面随机取数字,只要设置的seed相同取出地随机数就一样)。如果不设置seed,则每次会生成不同的随机数。(注:seed括号里的数值基本可以随便设置哦)

但是有时候你明明设置了seed()没有变,但生成的随机数组还是不同,这是怎么回事呢?请看:

import numpy as np
np.random.seed(0)
np.random.rand(10)
Out[357]: 
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318, 0.4236548 ,
       0.64589411, 0.43758721, 0.891773  , 0.96366276, 0.38344152])
np.random.rand(10)
Out[358]: 
array([0.79172504, 0.52889492, 0.56804456, 0.92559664, 0.07103606,
       0.0871293 , 0.0202184 , 0.83261985, 0.77815675, 0.87001215])

大家一定会奇怪,咦?为什么会不一样,我不是已经设置了seed没变么?

其实,第二遍的np.random.rand(10)已经不是在你设置的np.random.seed(0)下了,所以第二遍的随机数组只是在默认random下随机挑选的样本数值。

那我们该怎么让两次随机数组一样呢?

我们只需要再输入一遍np.random.seed(0)就好了,请看:

np.random.seed(0)
np.random.rand(4,3)
Out[362]: 
array([[0.5488135 , 0.71518937, 0.60276338],
       [0.54488318, 0.4236548 , 0.64589411],
       [0.43758721, 0.891773  , 0.96366276],
       [0.38344152, 0.79172504, 0.52889492]])
np.random.seed(0)
np.random.rand(4,3)
Out[364]: 
array([[0.5488135 , 0.71518937, 0.60276338],
       [0.54488318, 0.4236548 , 0.64589411],
       [0.43758721, 0.891773  , 0.96366276],
       [0.38344152, 0.79172504, 0.52889492]])

看!是不是成功了呢。

下面再给大家看个例子,以供大家更好地理解:

def rng():
    for i in range(5):
        np.random.seed(123)
        print(np.random.rand(4))
        
rng()
>>>[0.69646919 0.28613933 0.22685145 0.55131477]
   [0.69646919 0.28613933 0.22685145 0.55131477]
   [0.69646919 0.28613933 0.22685145 0.55131477]
   [0.69646919 0.28613933 0.22685145 0.55131477]
   [0.69646919 0.28613933 0.22685145 0.55131477]
def rng_n():
    np.random.seed(123)
    for i in range(5):
        print(np.random.rand(4))
        
rng_n()
>>>[0.69646919 0.28613933 0.22685145 0.55131477]
   [0.71946897 0.42310646 0.9807642  0.68482974]
   [0.4809319  0.39211752 0.34317802 0.72904971]
   [0.43857224 0.0596779  0.39804426 0.73799541]
   [0.18249173 0.17545176 0.53155137 0.53182759]

请仔细看这两个自定义函数的不同,大家现在是不是对np.random.seed()有了更好的理解了呢?

 

 

该文章已生成可运行项目
在 Python 中,`random.seed(42)` 和 `numpy.random.seed(42)` 虽然都用于控制随机数生成,但它们分别属于不同的模块,并且在功能和作用范围上存在显著差异。 `random.seed(42)` 是 Python 标准库 `random` 中的方法,用于初始化随机数生成器的种子值。这个模块生成的随机数主要用于基础的随机需求,例如生成随机浮点数、整数或从序列中随机选择元素等。`random.seed()` 的作用范围仅限于 `random` 模块本身,这意味着即使设置了种子值,也不会影响到其他库如 NumPy 或 TensorFlow 生成的随机数[^3]。 另一方面,`numpy.random.seed(42)` 是 NumPy 库中的方法,用于初始化 NumPy 的随机数生成器。NumPy 提供了更为丰富的随机分布函数,适用于科学计算和大规模数据处理。与 `random.seed()` 类似,`numpy.random.seed()` 也用于确保实验的可重复性,但它仅影响 NumPy 的随机数生成器[^2]。 值得注意的是,尽管两者都可以通过设置相同的种子值来获得一致的随机数序列,但是它们之间互不干扰。也就是说,设置 `random.seed(42)` 不会影响 `numpy.random.seed(42)` 的行为,反之亦然。此外,`numpy.random.seed()` 在某些情况下可能不如 `numpy.random.RandomState()` 推荐使用,因为后者提供了更多的灵活性和控制能力,特别是在需要多个独立随机数流的情况下[^4]。 为了更好地理解这两个函数的行为,下面提供了一个简单的示例代码: ```python import random import numpy as np random.seed(42) print("Random module:", [random.random() for _ in range(5)]) np.random.seed(42) print("NumPy module:", [np.random.random() for _ in range(5)]) ``` 这段代码首先设置了 `random` 模块的种子值为 42,然后生成了五个随机浮点数;接着设置了 `numpy.random` 的种子值也为 42,并同样生成了五个随机浮点数。由于种子值相同,对于各自的模块来说,生成的随机数序列是可预测且一致的。 然而,需要注意的是,如果在同一个程序中混合使用 `random` 和 `numpy.random`,那么它们各自的种子设置不会互相影响。这意味着即使 `random.seed(42)` 和 `numpy.random.seed(42)` 同时被调用,它们生成的随机数序列仍然是独立的,并且基于各自的内部状态。 此外,当涉及到更复杂的场景时,例如在多线程或多进程环境中,或者在机器学习框架如 TensorFlow 中,随机数生成器的行为可能会受到额外因素的影响。例如,在 TensorFlow 中,除了设置全局随机种子之外,还需要考虑操作级别的种子设置,以确保结果的可重复性。 总结来说,`random.seed(42)` 和 `numpy.random.seed(42)` 都是用来设置随机数生成器的种子值,以便于获得可重复的随机数序列。然而,它们分别属于不同的模块,作用范围不同,且在某些高级应用场景中可能需要采用不同的策略来管理随机性。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值