关联规则中的支持度、置信度以及提升度

本文深入探讨了数据挖掘中的重要概念——支持度、置信度和提升度。支持度衡量的是某项元素在数据集中的频率,置信度则表示两个元素共同出现的概率,而提升度反映了元素间关联强度相对于独立出现的增强程度。这些度量在关联规则学习和推荐系统中有广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 支持度

    • 定义:简单解释其实就是某一物品/组合的曝光率,或者是出镜率,即:该物品/组合在队列中出现的次数占队列总数的比例。

    • 计算方式:
      S u p p o r t = C ( A ) C ( T o t a l ) , 其 中 C ( A ) 为 A 的 出 现 次 数 , C ( T o t a l ) 为 总 数 量 Support = \frac{C(A)}{C(Total)},其中C(A)为A的出现次数,C(Total)为总数量 Support=C(Total)C(A),C(A)AC(Total)

  • 置信度

    • 定义:如果某一物品A出现了,另一物品B也出现的概率,即:A和B同时出现的次数占A出现的总次数的比例。

    • 计算方式:
      C o n f i d e n c e ( A ∣ B ) = C ( A ∩ B ) C ( A ) , 其 中 C ( A ∩ B ) 为 A 和 B 同 时 出 现 的 次 数 , C ( A ) 为 A 的 出 现 次 数 Confidence(A|B) = \frac{C(A\cap B)}{C(A)},其中C(A\cap B)为A和B同时出现的次数,C(A)为A的出现次数 Confidence(AB)=C(A)C(AB),C(AB)ABC(A)A

  • 提升度

    • 定义:当物品A出现,物品B也出现的概率占物品B的曝光率(支持度)的比例。

    • 计算方式:
      L i f t ( A ∣ B ) = C o n f i d e n c e ( A ∣ B ) S u p p o r t ( B ) Lift(A|B) = \frac{Confidence(A|B)}{Support(B)} Lift(AB)=Support(B)Confidence(AB)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值