基于自适应弹性网络回归的目标跟踪(OBJECT TRACKING WITH ADAPTIVE ELASTIC NET REGRESSION)阅读笔记

基于自适应弹性网络回归的目标跟踪(OBJECT TRACKING WITH ADAPTIVE ELASTIC NET REGRESSION)阅读笔记

by:家行hang
论文链接:
Object tracking with adaptive elastic net regression
Zhang, Shunli ; Xing, Weiwei
2017 IEEE International Conference on Image Processing, Sept. 2017, pp.2597-2601

参考:
1. 目标跟踪简介

摘要

近年来,各种基于回归的跟踪方法取得了很大的成功,然而,在大多数方法中,提取的所有特征都是用来表示对象的,而不需要进行特征选择。
(这里的意思是提取的所有特征全都用上了,而不是选择着去用)

本文提出了一种 基于自适应权(adaptive weight)弹性网络回归 的新的跟踪方法,一方面,跟踪被表述为一个 弹性网络回归 问题,它不仅可以充分利用空间信息,而且可以自动选择特征来减轻不稳定或不准确点的影响,另一方面,回归模型中的“1范数”和“2范数”正则化会自适应调整,以更好地提高性能。实验结果表明,所提出的自适应弹性网络回归跟踪方法能够获得满意的跟踪性能。

参考:
1. 机器学习中的正则化
2. 几种范数的简单介绍
3. 范数理解(0范数,1范数,2范数)
4. 【机器学习】正则化的线性回归 —— 岭回归与Lasso回归
5. 为什么正则化能减少模型过拟合程度
6. 为什么正则化(Regularization)可以减少过拟合风险

关键词:目标追踪,弹性网络回归(elastic net regression),自适应权(adaptive weight)

1 介绍

目标跟踪作为计算机视觉领域的研究热点之一,在视频监控、运动分析等领域有着广泛的应用。然而,跟踪面临着严重遮挡、变形、背景复杂等多种因素,难以实现鲁棒跟踪。

表观模型(appearance model)在跟踪中起着重要的作用,传统的表观模型一般可分为两类:
- 生成式模型(generative model):就是只有一个模型,你把测试用例往里面一丢,label就出来了,如SVM。
- 判别式模型(discriminative model):有多个模型(一般有多少类就有多少个),你得把测试用例分别丢到各个模型里面,最后比较其结果,选择最优的作为label,如朴素贝叶斯。

(???表观模型中的区别呢???)

参考:
1. 产生式模型与判别式模型的区别
2. 机器学习–判别式模型与生成式模型
3. 生成式模型和判别式模型的区别
4. 机器学习 之 生成式模型 VS 判别式模型

近年来,一些基于回归的判别式模型取得了很大的发展,并获得了最先进的跟踪性能。例如,Hare等人提出了基于结构化输出回归的Struck方法,使用结构化输出预测来避免中间分类步骤,Henriques 等人提出了将跟踪表示为基于岭回归模型构造相关滤波器的问题,Zhang等人提出了基于混合支持向量机的跟踪方法,其中在目标的相邻样本基础上建立了支持向量回归模型。与传统的基于二分类的判别模型不同,回归模型具有一些明显的优势。例如,回归的目标和跟踪任务总是一致的,可以充分利用背景信息。然而,大多数基于回归的跟踪方法使用提取的所有特征。每个特性都被赋予相同的权重,并且不考虑特性的重要性。换句话说,就是没有特征选择。

在跟踪过程中,我们可以观察到目标的形状可能发生变形,或者目标发生了姿势的变化。此外,目标可能被另一个物体遮挡(Fig. 1).这些因素表明目标的某些部分不稳定,可能会影响表观模型的性能。遮挡也会干扰训练样本,从而降低模型的准确度。通过选取样本的稳定准确的部分建立外观模型,可以减少变形和遮挡的影响,提高鲁棒性。
(这部分说明特征选取的重要性,可以减少目标跟踪中变形和遮挡的影响。)

本文将跟踪问题表述为一个自适应弹性网络回归问题。弹性网络是一种包含 “1范数”和“2范数”正则化 的回归技术。它可以看作是 Lasso回归 和 岭回归 的结合,保留了上述两种回归模型的优点。弹性网络在许多领域都得到了应用,并取得了成功的应用。将跟踪定义为一个弹性网络回归问题可以带来两个好处:
- 弹性网络保持了回归模型的优点,可以利用背景的更多信息。
- 弹性网络能够自适应地选择稳定的特征进行训练,从而使表观模型更加精确。
  

此外,我们提出了一种自适应策略来自动确定“1范数”和“2范数”的权重。实验结果表明,该方法可以获得与许多最先进的跟踪方法相似的跟踪结果。

2 用弹性网络回归跟踪

2.1 具有自适应弹性网络回归的表观模型

2.1.1 简述

虽然采用了岭回归和支持向量回归等不同的回归策略来构建回归表观模型,但权重向量w的正则项往往采用“2范数”,对特征的鲁棒性不够重视。在此,我们将跟踪定义为一个弹性网络回归问题,弹性网络能够自适应地选择最稳定的特征来学习函数,从而在“1范数”和“2范数”之间进行权衡,因此,我们使用弹性网来选择最鲁棒、最稳定的外观表现特征,减少变形、遮挡等因素对外观变化的影响。

具体来说,假设训练样本集为 x x ,其对应样本的元素为 xi x i ,回归值为 yi y i
线性回归函数可以定义为 f(x)=wTx f ( x ) = w T x ,其中训练样本 xi x i 和回归值 yi y i 均以相应的均值为中心。然后将弹性网络正则化回归的优化问题表示为:
         minwi12||wTxiyi||22+λ(α1||w||1+α2||w||22),(1) m i n w ⁡ ∑ i 1 2 | | w T x i − y i | | 2 2 + λ ( α 1 | | w | | 1 + α 2 | | w | | 2 2 ) , ( 1 )
        (???是加上了两种正则项的损失函数么???)
这里的 λ λ 表示误差与正则化之间的权衡参数, α1 α 1 , α2 α 2 控制“1范数”和“2范数”正则化的比例,并且 α1+α2=1 α 1 + α 2 = 1

此外,我们把等式(1)中的 α=[α1,α2]T α = [ α 1 , α 2 ] T 也视为优化参数。由于视频序列的不同帧中对象的稳定特性可能不同,不同视频序列中的对象也可能不同,因此对权衡参数进行自适应调整是有益的。
之后,等式(1)变为:
         minw,αi12||wTxiyi||2

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值