莱斯信道衰落下的QPSK误码率分析

在无线信道中,莱斯分布是一种最常见的用于描述接收信号包络统计时变特性的分布类型。其中莱斯因子是反映信道质量的重要参数,在计算信道质量和链路预算、移动台移动速度以及测向性能分析等都发挥着重要的作用 [4] 。信号在传输过程中由于多径效应,接收信号是直射信号(主信号)和多径信号的叠加,此时接收信号的包络服从莱斯分布。事实上,在考虑多径效应的时候,原始信号与呈现瑞利分布的多径分量的和常常被描述为莱斯分布。
其中,莱斯分布的概率密度函数为
在这里插入图片描述
下面给出在莱斯信道衰落下的QPSK误码率分析代码。

clear all;
close all;
K_rice_dB=40;               %莱斯分布的增益
K_rice=10^(K_rice_dB/10);
M=4;                        %MPSK
k=log2(M);                  %每符号的比特数
N_sym=10;                   %分块处理,每个块含有的符号数
N_bit=k*N_sym;              %总共要处理的符号数
N_block=10000;              %块的数目
Es=1;                       %将每个符号的能量归一化    
Eb=Es/k;                    %计算每比特的能量   
Eb_N0_dB=0:1:10;            %初始化信噪比
Eb_N0=10.^(Eb_N0_dB/10);
N0=Eb./Eb_N0;               %计算噪声功率谱密度
len_EbN0=length(Eb_N0);

EbN0_pointer=1;
temp_EbN0_pointer=EbN0_pointer;
errs=zeros(1,len_EbN0);     %错误码元数目初始化
block_count=zeros(1,len_EbN0);
while (EbN0_pointer <= len_EbN0) && (block_count(len_EbN0) < N_block)
    B=round(rand(1,N_bit)); %产生随机二进制序列
    Dm=reshape(B,k,N_sym);  %矩阵转置
    D = Dm(1,:)+1i*Dm(2,:); %产生两路独立的二进制信号.
    Tx_data = sqrt(Eb) * (2*D-(1+1i));                      %发射双极性不归零二进制信号
    Noise=sqrt(0.5)*(randn(1, N_sym)+1i*randn(1, N_sym));   %高斯噪声
    h_ray=sqrt(0.5)*(randn(1,1)+1i*randn(1,1));             %瑞利衰落分布信道
    h_rice=(sqrt(K_rice)+h_ray)/sqrt(1+K_rice);             %莱斯衰落分布信道,这里要做归一化
    for n = EbN0_pointer : len_EbN
        Rx_data = h_rice*Tx_data + sqrt(N0(n))*Noise;       %接收端信号
        y=Rx_data/h_rice;                                   %信道增益
        Recov_Tx_data= sqrt(Eb)*(sign(real(y))+1i*sign(imag(y)));
        Recov_D = 0.5*(1+1i+Recov_Tx_data/sqrt(Eb));
        errs(n)= errs(n)+sum(abs(Recov_D-D).^2);            %计算错误比特数
        if errs(n)>=800
            temp_EbN0_pointer = temp_EbN0_pointer+1;
        end;
        block_count(n)=block_count(n)+1;                    %进入下一块循环
    end;
    EbN0_pointer=temp_EbN0_pointer;
    block_count
end; 
Num_BER = errs./(N_bit*block_count);                        %数值模拟误码率
Ana_BER=0.5*(1-sqrt(Eb_N0./(1+Eb_N0)));                     %理论误码率
figure;                                                     %做出误码率曲线
semilogy(Eb_N0_dB, Num_BER, '-s');
hold on;
semilogy(Eb_N0_dB, Ana_BER, 'r-*');
grid on;
Rician_legend=['Rician fading (K= ',num2str(K_rice_dB),' dB)'];
legend(Rician_legend, 'Rayleigh fading');
title('QPSK in Ricean Fading Channels');
xlabel('Eb/N0 (dB)');
ylabel('BER');
QPSK(Quadrature Phase Shift Keying)是一种常用的调制方式,通过将两个正交的载波相位进行调制来实现信息传输。在不同的信道条件下,QPSK误码率特征曲线会有所不同。 对于通过高斯信道QPSK调制,高斯信道是一种理想的信道,具有较低的噪声和干扰。在此信道下,误码率特征曲线通常呈现出由误码率递减至一定程度后基本保持稳定的趋势。随着信噪比的增加,误码率逐渐降低,但当信噪比达到一定水平后,误码率的改善效果不再明显。 而在通过瑞利信道QPSK调制中,瑞利信道是一种模拟无线传输中常见的衰落信道,具有多径传播和多普勒扩展等特点。在此信道下,由于多径效应和多普勒频偏,信号会受到时间和频率上的混叠和衰落影响,导致误码率特征曲线呈现出波动的变化。在低信噪比下,误码率较高;随着信噪比的提高,误码率逐渐减小,但由于多径信道衰落效应,误码率仍然会周期性地波动。 对于通过莱斯信道QPSK调制,莱斯信道也是一种常见的衰落信道,具有强衰落分布的特点。在此信道下,误码率特征曲线也会呈现出波动的变化,但相对于瑞利信道来说,莱斯信道衰落效应更为明显,误码率的波动幅度更大。 综上所述,QPSK通过不同的信道传输时,误码率特征曲线的形态会有所不同。高斯信道下的误码率特征曲线较为平稳;瑞利信道下的误码率特征曲线会周期性地波动;而莱斯信道下的误码率特征曲线也会波动,但波动幅度更大。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值