交叉熵损失 在PyTorch 中的计算过程

其实就是根据 真实值的结果,当成索引去取的值
import torch
import torch.nn as nn

aaaa = torch.tensor([[2.0,1.0,3.0],
             [2.0,4.0,2.0]])

l1 = nn.LogSoftmax(dim=-1)
result = l1(aaaa)
print(result)

import torch
import torch.nn as nn

# 定义交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 模拟的模型输出(没有经过 softmax)
aaaa = torch.tensor([[2.0, 1.0, 3.0],
                     [2.0, 4.0, 2.0]])

# 模拟的目标类别
target = torch.tensor([2, 1])

# 计算交叉熵损失
loss = criterion(aaaa, target)
print("交叉熵损失:", loss.item())

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值