其实就是根据 真实值的结果,当成索引去取的值
import torch
import torch.nn as nn
aaaa = torch.tensor([[2.0,1.0,3.0],
[2.0,4.0,2.0]])
l1 = nn.LogSoftmax(dim=-1)
result = l1(aaaa)
print(result)
import torch
import torch.nn as nn
# 定义交叉熵损失函数
criterion = nn.CrossEntropyLoss()
# 模拟的模型输出(没有经过 softmax)
aaaa = torch.tensor([[2.0, 1.0, 3.0],
[2.0, 4.0, 2.0]])
# 模拟的目标类别
target = torch.tensor([2, 1])
# 计算交叉熵损失
loss = criterion(aaaa, target)
print("交叉熵损失:", loss.item())