从规则到大模型:知识图谱信息抽取实体NER与关系RE任务近10年演进发展详解

摘要

本文回顾了关系抽取与实体抽取领域的经典与新兴模型,清晰地梳理了它们的出现时间与核心创新,并给出在 2025 年不同资源与场景下的最佳实践推荐。文章引用了 BiLSTM‑CRF、BiLSTM‑CNN‑CRF、SpanBERT、LUKE、KnowBERT、CasRel、REBEL、UIE,大模型抽取 等模型的原始论文与权威来源,帮助读者全面、系统地理解信息抽取技术的发展脉络与应用指南。


 

一、信息抽取技术的发展时间线

年份

代表模型

核心贡献

2016

BiLSTM‑CRF(Lample et al.)

将双向 LSTM 与 CRF 解码结合,实现端到端序列标注

2016

BiLSTM‑CNN‑CRF(Ma & Hovy)

引入字符级 CNN 捕捉形态特征,增强未登录词处理

2019

KnowBERT(Peters et al.)

将 WordNet/Wikipedia 知识注入 BERT,提升实体与关系抽取

2020

SpanBERT(Joshi et al.)

用 span‑masking 学习片段边界表示,提升 QA 与关系抽取 (ArXiv 版本)

2020

LUKE(Yamada et al.)

实体感知自注意力,词与实体同处编码,刷新多项 SOTA

2020

CasRel(Wei et al.)

级联二元标注解决三元组重叠(SEO/EPO)问题

2021

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值