【python环境一键搞定!】从入门到进阶,Conda 环境管理 + Pip 环境管理全攻略!

前言

还在手动配置各种 Python 环境?还在为包冲突秃头?这篇文章将手把手教你如何使用 Conda 来管理环境、并和 Pip 并行作战,附送国内镜像源设置方法,让你轻松告别“网络延迟”与“安装失败”!


一、Conda 是啥?

Conda 是一个开源的包管理器 + 环境管理工具,常用于 Python/R 等多语言项目。它可以让你在同一台电脑上创建多个互不干扰的“虚拟环境”,从此大大减少包冲突和版本不兼容的困扰。


二、下载安装 Conda

1. 选 Anaconda 还是 Miniconda?

1. Anaconda:附带大量常用的数据科学包(Numpy、Pandas、Matplotlib 等),包体积较大,一步到位。

2. Miniconda:只有 Conda 核心,体积小巧,想装什么包自己来。


官方下载地址

Miniconda (官方)

Anaconda (官方)

建议:如果对包体积敏感或者只需核心功能,选择 Miniconda。初学者或一次配齐所有数据分析库,则可选 Anaconda。


2. 安装步骤(以 Miniconda 为例)

Windows:下载 .exe,双击安装,按提示 “Next”->“I Agree”-> 选择安装目录->“Install”-> “Finish”。

macOS / Linux:下载 .sh,在终端执行:

bash Miniconda3-latest-Linux-x86_64.sh

# 或

bash Miniconda3-latest-MacOSX-x86_64.sh

全程“Enter” + “yes” 即可完成,之后重开一个终端,即可使用 conda 命令。


3. 验证安装

conda --version

若输出诸如 conda 23.x.x,恭喜你成功安装!


三、基本操作命令(Conda + Pip 并行)

1. Conda 常用命令

conda --version           # 查看 conda 版本

conda update conda    # 更新 conda 本身

conda info                    # 查看 conda 基本信息

conda create -n myenv python=3.8   # 创建名为 myenv 的环境,Python 3.8

conda activate myenv                        # 激活 myenv 环境

conda deactivate                                # 退出当前环境,回到上层(通常是 base)

conda env list                                     # 列出所有环境

conda install numpy                           # 在当前环境安装 numpy

conda list                                           # 查看已安装的包

conda remove numpy                        # 卸载 numpy

conda update numpy                         # 更新 numpy

conda remove --name myenv --all     # 删除 myenv 环境(一次性清理)

# 或者:

conda env remove -n myenv

conda clean --all                                # 清理未使用的包和缓存


2. Pip 常用命令


在 Conda 环境下,Pip 依然可以使用,但请尽量先用 conda install 安装库,因为 Conda 会更好地处理依赖关系。某些 Conda 中没有的包,再用 Pip 来安装。

pip install requests                   # 安装 requests

pip uninstall requests               # 卸载 requests

pip list                                       # 列出已安装的包

pip freeze > requirements.txt    # 导出 pip 包信息

pip install -r requirements.txt     # 通过文件安装 pip 包


3.Conda + Pip 并行可行吗?

可以,但需注意尽量在 Conda 环境中优先用 conda install 安装常见科学计算包(如 numpy、pandas 等),这样能减少冲突。

• 对于 Conda 没有收录的第三方库,可以使用 pip install xxx。

• 一般情况下,两者能够并行运行,若出现冲突,建议新建一个环境,分别测试哪些包更适合用 conda 安装,哪些用 pip 安装,以达到最佳兼容性。


四、如何导出 & 导入环境(Conda + Pip 双保险)

1. Conda 方式

# 导出当前环境依赖到 environment.yml

conda env export > environment.yml

# 通过 environment.yml 创建新环境

conda env create -f environment.yml

# 在已存在的环境中,更新环境使其与 environment.yml 同步

conda env update -f environment.yml


2. Pip 方式

如果你也用 Pip 安装了一些包,希望别人用 Pip 的方式一键还原,则可以:

# 导出 pip 包信息到 requirements.txt

pip freeze > requirements.txt

# 通过 requirements.txt 一键安装

pip install -r requirements.txt

建议:为了保证团队共享环境的完整一致性,最好同时导出 environment.yml 和 requirements.txt,这样无论他人用 Conda 还是 Pip,都能按需安装对应的包。


五、国内镜像源配置(Conda & Pip)

1. Conda 设置国内镜像源

国外服务器经常因网络原因导致下载失败或速度感人。幸运的是,我们可以添加国内镜像源(如清华 TUNA、阿里云等)。以下以 清华镜像 为例:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r

conda config --set show_channel_urls yes

channels:添加替换的仓库源地址。

show_channel_urls:让 Conda 显示具体源信息,方便调试。

有时需要移除官方默认源,或调换优先级;也可手动修改 ~/.condarc 文件(macOS/Linux)或 C:\Users\<用户名>\.condarc(Windows)。


2. Pip 设置国内镜像源

同样地,Pip 也可使用国内镜像。编辑/创建 ~/.pip/pip.conf(macOS/Linux)或 C:\Users\<用户名>\pip\pip.ini(Windows),写入:

[global]

index-url = https://pypi.tuna.tsinghua.edu.cn/simple

timeout = 6000

这样,未来 pip install 都会走国内镜像,速度快到飞起!


六、实操演示:开发全流程

1. 安装 & 更新

conda update conda

2. 创建环境

conda create -n mydata python=3.9

conda activate mydata

3. 镜像设置(可选,提升下载速度):

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

conda config --set show_channel_urls yes

4. 安装依赖

conda install numpy pandas

# 如果某些库 conda 没有,则用 pip

pip install requests

5. 开发 & 测试代码

6. 导出环境

# Conda 环境

conda env export > environment.yml

# Pip 包

pip freeze > requirements.txt

7. 分享给队友

# 队友可以用 Conda

conda env create -f environment.yml

# 也可以只想用 pip

pip install -r requirements.txt

8. 环境维护

conda clean --all

让硬盘清爽又干净!


七、常见 Q&A

1. Conda 和 Pip 可以混用吗?

可以,但要优先用 Conda 安装 Conda 能找到的包,只有当包不在 Conda 仓库,才用 Pip。

2. 安装时速度奇慢或超时

• 尝试添加国内镜像源,或更换网络环境(VPN/代理)。

3. 权限不够

• 安装在用户目录即可。别把 Conda 安到系统文件夹,容易各种“踢飞权限”。

4. 环境冲突

• 新建一个干净环境即可,别在一个环境里啥都往里装,否则冲突概率会飙升。


八、结束语

恭喜你

• 现在你学会了安装和使用 Conda。

• 你也知道如何用 Pip 继续安装无法在 Conda 中找到的包。

• 你更知道如何设置国内镜像源,让下载和安装畅通无阻。


要是本篇带给你一点点帮助,还请多多点赞关注收藏以及转发给更多小伙伴,一起摆脱“环境炼狱”!

点赞:你的一赞是我持续更新的最大动力!

关注:后续还会分享更多编程干货,别错过哦!

收藏:随时翻看攻略,不怕踩坑!

评论:有疑问或想法,欢迎在评论区留言交流!

转发:把这篇文章分享给需要的朋友,让我们一起愉快地玩转 Conda !

从此让我们在 Conda + Pip 的世界里自由畅行,做个安静又快乐的“吃瓜”攻城狮吧!

—— 全文完 ——

感谢阅读,期待你的点赞 + 关注 + 评论 + 收藏 + 转发,我们下期见!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值