无论怎样,都不要忘记微笑!愿你成为自己的太阳,无须借助谁的光!
刚开始,对于神经网络这个黑匣子,一直保持不认可,不接受的态度,而这一切的根源就在于它的可解释性太差,你搞不懂它为什么实验性能好?而神经网络实验性能的好坏又与参数有着很大的关系,此时,调参成为了重中之重,感觉有点舍本逐末的意思!
调参大家普遍采用grid search算法,之前做实验的时候,都是采用一些经验值,但是模型不同,最好的参数应该也是不同的,所以,此刻返回来又想看看如何进行参数的选择?
昨天,想借助sklearn中的grid search来进行实验验证,结果出现导入错误
问题:输入from sklearn.model_selection import GridSearchCV
ImportError:No module named 'sklearn.model_selection‘
原因:要想直接使用sklearn.model_selection,须将sklearn版本更新到‘0.18.1’以上
解决:安装