Tensorflow函数学习笔记2---tf.multipy和tf.matmul

本文是TensorFlow函数学习笔记,主要探讨了tf.multiply进行元素级别相乘的操作,包括数据类型要求、不同形状的乘法示例以及可能遇到的问题。同时,介绍了tf.matmul进行矩阵乘法的功能,包括转置和共轭转置的操作,并提到了稀疏矩阵的处理。
摘要由CSDN通过智能技术生成

1、multiply(x,y,name=None)—实现元素级别的相乘 

1)注意:x与y要有相同的数据类型,要是int都是int,要是float都是float,否则会因为数据类型不匹配而报错,看下面例子:

x=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
y=tf.constant([[0,0,1],[0,0,1],[0,0,1]])
z = tf.multiply(x, y)

TypeError: Input 'y' of 'Mul' Op has type int32 that does not match type float32 of argument 'x'.
    只要将y中的一个元素改为float形,则不会再报错:如y=tf.constant([[0,0,1.0],[0,0,1],[0,0,1]])。若x与y形状相同,则对应元素相乘,即使多维,也是如此,结果如下:[[ 0.  0.  3.]
                                                              [ 0.  0.  3.]
                                                              [ 0.  0.  3.]]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值