机器学习之分类问题的评估指标2---准确率、精确率、召回率以及F1值

本文介绍了在sklearn.metrics中计算准确率、精确率、召回率和F1值的方法,探讨了在多分类问题中如何使用这些指标,包括average参数的不同选项,如micro、macro、weighted等,以及它们在处理标签不平衡问题时的影响。
摘要由CSDN通过智能技术生成

本节主要了解一下sklearn.metrics下计算准确率、精确率、召回率和F1值的函数以及对于多分类问题计算时的理解

1、sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)
normalize:bool型值,默认为True;如果为False,则表示正确分类的样本数

2、klearn.metrics.recall_score(y_true, y_pred, labels=None, pos_label=1,average=’binary’, sample_weight=None)
     klearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1,average=’binary’, sample_weight=None) 
     klearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1,average=’binary’, sample_weight=None) 
labels:多类问题时候的标签集,可以去掉一些存在的标签,比如忽略掉多数负样例的多类平均值。
pos_label:str或int。如果是二分类,用于指定的类(0或1);如果是多分类或多标签,通常会忽略,但如果设置pos_label=关心的类和average!=‘binary’时,则返回该标签的分数。
average : string, [None, ‘binary’ (d

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值