本节主要了解一下sklearn.metrics下计算准确率、精确率、召回率和F1值的函数以及对于多分类问题计算时的理解
1、sklearn.metrics.accuracy_score
(y_true, y_pred, normalize=True, sample_weight=None)
normalize:bool型值,默认为True;如果为False,则表示正确分类的样本数
2、klearn.metrics.recall_score(y_true, y_pred, labels=None, pos_label=1,average=’binary’, sample_weight=None)
klearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1,average=’binary’, sample_weight=None)
klearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1,average=’binary’, sample_weight=None)
labels:多类问题时候的标签集,可以去掉一些存在的标签,比如忽略掉多数负样例的多类平均值。
pos_label:str或int。如果是二分类,用于指定的类(0或1);如果是多分类或多标签,通常会忽略,但如果设置pos_label=关心的类和average!=‘binary’时,则返回该标签的分数。
average : string, [None, ‘binary’ (d