基本运动曲线(1)

本文深入探讨了机器人运动规划中的基本轨迹函数,包括多项式、三角函数、指数函数和傅里叶级数展开式。重点讲解了线性、抛物线、三次多项式以及高阶多项式轨迹的特性,并分析了它们在加速度连续性和机械振动影响方面的优缺点。同时,文章还介绍了如何通过组合基本函数优化轨迹规划,如双S速度轮廓、分段多项式和改进型轨迹,以减少应力和振动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2学习简单轨迹的基本函数

2.1 多项式

指定初始时刻t_0和终止时刻t_1的位置,以及速度和加速度等条件来定义一段运动,从数学角度,可以用一个函数来描述:

q=\left ( t \right ) t\in\left [ t_0,t_1 \right ]

该函数能够满足给定条件:

q(t)=a_0+a_1t+a_2t^{2}+....+a_nt^{n}

根据初始时刻和终点时刻的约束条件可以确定n+1个a_n系数,多项式的次数取决于满足条件的数目和目标运动期望的平滑度。

注:由于边界条件的数量通常是偶数,所以多项式函数的次数n一般是奇数。

2.1.1 线性轨迹(速度恒定)

2.1.2 抛物线轨迹(加速度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值