DFS
1.递归
2.回溯,恢复现场
示例1 暴力搜索
给定一个整数n,将数字1~n排成一排,将会有很多种排列方法。
现在,请你按照字典序将所有的排列方法输出。
输入格式
共一行,包含一个整数n。
输出格式
按字典序输出所有排列方案,每个方案占一行。
数据范围
1≤n≤71≤n≤7
输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
#include <iostream>
using namespace std;
const int N = 10;
int n;
int path[N];//存方案的
bool state[N];
void dfs(int u)//递归算法
{
if (u == n)//如果搜到最后了(叶节点)
{
for (int i = 0; i < n; i ++ ) printf("%d ", path[i]);//输出组合
puts("");//空格
return;//返回
}
for (int i = 1; i <= n; i ++ )//递归,遍历所有数,1,2,3
if (!state[i])//如果这个数没有被用过
{
path[u] = i;//因为i从0开始
state[i] = true;//用过了
dfs(u + 1);//递归下一层
//递归结束,恢复现场
state[i] = false;//回溯时回复现场,这里就是状态变为没有查询过
}
}
int main()
{
scanf("%d", &n);
dfs(0);//从0开始看
return 0;
}
优化状态
#include <iostream>
using namespace std;
const int N = 10;
int n;
int path[N];//存方案的
void dfs(int u, int state)//递归算法
{
if (u == n)//如果搜到最后了(叶节点)
{
for (int i = 0; i < n; i ++ ) printf("%d ", path[i]);//输出组合
puts("");//空格
return;//返回
}
for (int i = 0; i < n; i ++ )//递归,遍历所有数
if (!(state >> i & 1))//如果这个数没有被用过
{
path[u] = i + 1;//因为i从0开始
dfs(u + 1, state + (1 << i));//递归下一层
}
}
int main()
{
scanf("%d", &n);
dfs(0, 0);//从0开始看
return 0;
}
示例2 N皇后
n-皇后问题是指将 n 个皇后放在 n∗n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。
现在给定整数n,请你输出所有的满足条件的棋子摆法。
输入格式
共一行,包含整数n。
输出格式
每个解决方案占n行,每行输出一个长度为n的字符串,用来表示完整的棋盘状态。
其中”.”表示某一个位置的方格状态为空,”Q”表示某一个位置的方格上摆着皇后。
每个方案输出完成后,输出一个空行。
数据范围
1≤n≤91≤n≤9
输入样例:
4
输出样例:
.Q..
...Q
Q...
..Q.
..Q.
Q...
...Q
.Q..
剪枝:通过条件判断提前结束搜索
//按格子搜索
#include <iostream>
using namespace std;
const int N = 10;
int n;//棋盘大小
bool row[N], col[N], dg[N * 2], udg[N * 2];
char g[N][N];
void dfs(int x, int y, int s)//s是记录当前皇后个数
{
if (s > n) return;
if (y == n) y = 0, x ++ ;//到边界了,换到下一行
if (x == n)//枚举到最后一行了
{
if (s == n)//摆的皇后等于n了,找到了一组解
{
for (int i = 0; i < n; i ++ ) puts(g[i]);
puts("");
}
return;
}
//不放皇后
g[x][y] = '.';
dfs(x, y + 1, s);//直接递归就相当于没有剪枝
//放皇后
if (!row[x] && !col[y] && !dg[x + y] && !udg[x - y + n])//这个判断条件相当于剪枝
{
row[x] = col[y] = dg[x + y] = udg[x - y + n] = true;
g[x][y] = 'Q';
dfs(x, y + 1, s + 1);
g[x][y] = '.';
row[x] = col[y] = dg[x + y] = udg[x - y + n] = false;
}
}
int main()
{
cin >> n;
dfs(0, 0, 0);
return 0;
}
//按行搜索,每行都要放一个,对比于按格子放,相当于在逻辑上就剪纸了
#include <iostream>
using namespace std;
const int N = 20;
int n;
char g[N][N];//记录
bool col[N], dg[N], udg[N];//列,两个对角线,记录有没有放皇后
void dfs(int u)
{
if (u == n)//如果搜到头了,就输出结果
{
for (int i = 0; i < n; i ++ ) puts(g[i]);
puts("");
return;
}
//遍历
for (int i = 0; i < n; i ++ )
if (!col[i] && !dg[u + i] && !udg[n - u + i])//如果这一列没有,对角线也没有,(u,i)这个点在[u + i]号对角线上
{
g[u][i] = 'Q';//这个位置放一个皇后
col[i] = dg[u + i] = udg[n - u + i] = true;//相应列,对角线更新状态
dfs(u + 1);//递归求下一层
col[i] = dg[u + i] = udg[n - u + i] = false;//恢复现场
g[u][i] = '.';
}//如果这一行有了,直接搜索下一行
}
int main()
{
//初始化
cin >> n;
for (int i = 0; i < n; i ++ )
for (int j = 0; j < n; j ++ )
g[i][j] = '.';
//搜索
dfs(0);
return 0;
}