搜索与图论(二)BFS

边的权重都为1时才能用BFS求最短路

走迷宫

给定一个n*m的二维整数数组,用来表示一个迷宫,数组中只包含0或1,其中0表示可以走的路,1表示不可通过的墙壁。

最初,有一个人位于左上角(1, 1)处,已知该人每次可以向上、下、左、右任意一个方向移动一个位置。

请问,该人从左上角移动至右下角(n, m)处,至少需要移动多少次。

数据保证(1, 1)处和(n, m)处的数字为0,且一定至少存在一条通路。

输入格式

第一行包含两个整数n和m。

接下来n行,每行包含m个整数(0或1),表示完整的二维数组迷宫。

输出格式

输出一个整数,表示从左上角移动至右下角的最少移动次数。

数据范围

1≤n,m≤1001≤n,m≤100

输入样例:

5 5
0 1 0 0 0
0 1 0 1 0
0 0 0 0 0
0 1 1 1 0
0 0 0 1 0

输出样例:

8
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>

using namespace std;

typedef pair<int, int> PII;

const int N = 110;

int n, m;
int g[N][N], d[N][N];//g存地图,d存每一个点到起点距离

int bfs()
{
    queue<PII> q;//STL模板实现队列

    memset(d, -1, sizeof d);//初始化距离为-1
    d[0][0] = 0;
    q.push({0, 0});//起点压入队列

    int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};//向量表示四个方向

    while (q.size())
    {
        auto t = q.front();
        q.pop();//队头拿出来

        for (int i = 0; i < 4; i ++ )
        {
            int x = t.first + dx[i], y = t.second + dy[i];//尝试四个方向

            if (x >= 0 && x < n && y >= 0 && y < m && g[x][y] == 0 && d[x][y] == -1)//如果在边界内、能走、没有走过(只有第一次搜索到这个点的时候,才会更新他的距离,这样最后就会得到最短路)
            {   
                d[x][y] = d[t.first][t.second] + 1;//到起点距离等于上一个点到起点距离加1
                q.push({x, y});//压入队列
            }
        }
    }

    return d[n - 1][m - 1];//把右下距离输出
}

int main()
{
    cin >> n >> m;
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            cin >> g[i][j];//读取地图

    cout << bfs() << endl;

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值