Mini Batch K-Means算法原理及API解析

Mini Batch K-Means是K-Means的优化版本,通过随机抽取小批量数据加速收敛,减少计算时间。算法在每个小批量数据上更新质心,直至质心稳定或达到最大迭代次数。sklearn.cluster库提供了MiniBatchKMeans类,其参数如n_init、batch_size、reassignment_ratio等影响算法性能。此外,Mini Batch K-Means特有的partial_fit方法允许逐步训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思想:

Mini Batch K-Means算法是K-Means算法的变种,采用小批量的数据子集减小计算时间,同时仍试图优化目标函数,这里所谓的小批量是指每次训练算法时所随机抽取的数据子集,采用这些随机产生的子集进行训练算法,大大减小了计算时间,与其他算法相比,减少了k-均值的收敛时间,小批量k-均值产生的结果,一般只略差于标准算法。

迭代步骤: 
1:从数据集中随机抽取一些数据形成小批量,把他们分配给最近的质心 
2:更新质心 
与K均值算法相比,数据的更新是在每一个小的样本集上。对于每一个小批量,通过计算平均值得到更新质心,并把小批量里的数据分配给该质心,随着迭代次数的增加,这些质心的变化是逐渐减小的,直到质心稳定或者达到指定的迭代次数,停止计算 

API 

class sklearn.cluster.MiniBatchKMeans(n_clusters=8init=’kmeans++’max_iter=100batch_size=100verbose=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值