Introduction
上周,我对这篇关于构建多标签图像分类模型的精彩文章很感兴趣。 我的数据科学家开始探索将这个想法转化为自然语言处理(NLP)问题的可能性。
那篇文章展示了计算机视觉技术来预测电影的类型。 所以我必须找到一种方法将该问题陈述转换为基于文本的数据。 现在,大多数NLP教程都着眼于解决单标签分类挑战(每次观察时只有一个标签)。
但电影不是一维的。 一部电影可以跨越多种类型。 现在,这是一个我喜欢接受数据科学家的挑战。 我提取了一堆电影情节摘要,并开始使用这种多标签分类的概念。 即使使用简单的模型,结果也确实令人印象深刻。
在本文中,我们将采用非常实用的方法来理解NLP中的多标签分类。 我使用NLP建立电影类型预测模型很有趣,我相信你也会这样做。 我们来挖掘吧!
目录
- 多标签分类简介
- 设置我们的多标签分类问题陈述
- 关于数据集
- 我们构建电影类型预测模型的策略
- 实现:使用多标签分类来构建电影类型预测模型(在Python中)