分治法解决全排列问题及时间复杂度分析

本文介绍了如何使用分治算法解决全排列问题,详细阐述了问题描述、解决步骤,并提供了Java代码实现。通过交换、递归和恢复元素位置的方式生成所有可能的排列组合。同时,分析了该算法的时间复杂度为Ω(n!)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.3 排列(Permutation)

2.3.1 问题描述

给出n个元素的所有可能的排列方式。
如: [1,2,3]的排列有[1,2,3], [1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]

2.3.2 问题解决

在这里插入图片描述我们最开始有一个nums数组,我们首先从第一位开始排,第一位的值有三种可能,我们先设置一个变量start_index,它表示我们目前排到了第几位,然后分别让nums[start_index]和后面几位的元素交换位置,每交换好一次,就确定了那一位的值,然后开始往下一位继续递归,递归完毕后需要恢复到原来的位置,再让nums[start_index]和下一位交换位置。
总结来说就是三个步骤:

  • ① 交换元素位置
  • ② 递归
  • ③ 恢复元素位置

所以整个全排列的实现,其实是按照图中箭头的顺序实现的,向下的箭头都是交换元素位置,向上的箭头则是恢复元素位置
你可能会不理解为什么要交换和恢复元素位置?
简单来说就是,第一位可能是1、2、3三种可能,1和1交换得出1xx排列,1和2交换得出2xx排列,1和3换得出3xx排列。比如2xx的全部排完就是递归结束了,现在得把1和2的位置恢复回来,这样才能保证待会儿1和3交换。如果不恢复位置,就会变成2和3交换了,那就和我们的本意违背了。

2.3.3 代码实现
public static List<int[]> permute(int[] nums){
   
	List<int[]>
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值