问题描述:
在利用DeeplabV3+ 训练自己数据集时,loss一直在0.4附近震荡,测试集MIOU值在0.55附近(结果较差),折腾许久,终于有所提高,最近计算结果:测试集 MIOU > 0.8,且过拟合现象不明显。
参考链接:
1. https://blog.csdn.net/u011974639/article/details/80948990;
2. https://blog.csdn.net/qq_32799915/article/details/80070711
3. https://github.com/tensorflow/models/issues/3730
数据集描述:
数据共 2 类,其中:Images [256, 256, 3], jpg格式;Labels [256, 256, 1], png格式。
具体修改步骤:
1. 更改图片大小
编写脚本,将图片大小进行扩充,修改后为:Images [512, 512, 3], Labels [512, 512, 1]。至于为什么要更改图片大小,后面我会进行说明。

本文介绍了使用DeeplabV3+在自定义数据集上训练时遇到的loss震荡问题及解决方案。通过更改图片大小、调整数据集处理、修改训练参数,特别是crop_size,最终使测试集MIOU从0.55提升至超过0.8。此外,还探讨了预训练权重、损失权重以及batch_size和learning_rate的影响。
最低0.47元/天 解锁文章

3039

被折叠的 条评论
为什么被折叠?



