图像语义分割 — 利用Deeplab v3+训练自己的数据 loss震荡解决办法

本文介绍了使用DeeplabV3+在自定义数据集上训练时遇到的loss震荡问题及解决方案。通过更改图片大小、调整数据集处理、修改训练参数,特别是crop_size,最终使测试集MIOU从0.55提升至超过0.8。此外,还探讨了预训练权重、损失权重以及batch_size和learning_rate的影响。
摘要由CSDN通过智能技术生成

问题描述:

    在利用DeeplabV3+ 训练自己数据集时,loss一直在0.4附近震荡,测试集MIOU值在0.55附近(结果较差),折腾许久,终于有所提高,最近计算结果:测试集 MIOU > 0.8,且过拟合现象不明显。

参考链接:

1. https://blog.csdn.net/u011974639/article/details/80948990;

2. https://blog.csdn.net/qq_32799915/article/details/80070711

3. https://github.com/tensorflow/models/issues/3730

数据集描述:

    数据共 2 类,其中:Images [256, 256, 3], jpg格式;Labels [256, 256, 1],  png格式。

具体修改步骤:

1. 更改图片大小

    编写脚本,将图片大小进行扩充,修改后为:Images [512, 512, 3], Labels [512, 512, 1]。至于为什么要更改图片大小,后面我会进行说明。

2. 运行datasets下build_voc2012_data.py

评论 132
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值