数据结构 5. 递归

本文详细介绍了递归的概念,包括定义、实现,并通过斐波那契数列、阶乘计算以及爬楼梯问题(70. Climbing Stairs)和最小花费爬楼梯问题(746. Min Cost Climbing Stairs)的递归解法,深入浅出地展示了递归在编程中的应用。
摘要由CSDN通过智能技术生成

一、递归

1. 递归的定义

递归就是子程序(或函数)直接调用自己或通过一系列调用语句间接调用自己,是一种描述问题和解决问题的基本方法。
递归常与分治思想同时使用,能产生许多高效的算法。递归常用来解决结构相似的问题。所谓结构相似,是指构成原问题的子问题与原问题在结构上相似,可以用类似的方法解决。具体地,整个问题的解决,可以分为两部分:第一部分是一些特殊情况,有直接的解法;第二部分与原问题相似,但比原问题的规模小,并且依赖第一部分的结果。
实际上,递归是把一个不能或不好解决的大问题转化成一个或几个小问题,再把这些小问题进一步分解成更小的小问题,直至每个小问题都可以直接解决。因此,递归有两个基本要素:
(1) 边界条件:确定递归到何时终止,也称为递归出口。
(2) 递归模式:大问题是如何分解为小问题的,也称为递归体。
递归函数只有具备了这两个要素,才能在有限次计算后得出结果。

2. 递归的实现

2.1 斐波那契数列求值

def fib(n):
    if n==0 or n==1:
        return n
    return fib(n-1)+fib(n-2)

2.2 编程实现求阶乘 n!

def Factorial(n):
    if n<=1:
        return 1
    return n*Factorial(n-1)
Factorial(5)

2.3 编程实现一组数据集合的全排列

# 可用包 【自带的库itertools.permutations】获取子集的全排列
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值