统计学(1)二项分布 几何分布 泊松分布 指数分布 正态分布 gamma分布 beta分布

本文详细介绍了统计学中的常见分布,包括二项分布、几何分布、泊松分布、指数分布、gamma分布和beta分布。二项分布用于描述n次独立重复试验中成功次数的概率;几何分布关注首次成功所需试验次数的概率;泊松分布用于描述单位时间内稀有事件发生的次数;指数分布描述事件发生的时间间隔;gamma分布解决等待n个随机事件发生所需时间;而beta分布是[0,1]区间内的连续概率分布,常用于贝叶斯推断中的共轭先验。此外,文章还探讨了这些分布之间的联系,如泊松分布如何转化为正态分布,以及它们在现实场景中的应用。" 119519387,7850340,软件测评:负载压力测试与故障定位实践,"['软件测评', '性能测试', '故障诊断', '压力测试工具', '测试分析']
摘要由CSDN通过智能技术生成

1、二项分布

  n次独立重复试验,每次事件出现的结果只有两个,出现同一结果的概率相同为p;
  抛硬币,假设硬币不平整,抛出正面的概率为p,那么在n次抛硬币的实验中,出现k次正面的概率:
P = C n k × p k × ( 1 − p ) n − k P=C_{n}^{k} \times p^{k} \times(1-p)^{n-k} P=Cnk×pk×(1p)nk
  期望 : E ( x ) = n p E(x)=n p E(x)=np ; 方差: D ( x ) = n p ( 1 − p ) D(x) = np(1-p) D(x)=np(1p)

2、几何分布

  与二项分布关心的“n次实验k次成功的概率”不同,几何分布关心的是,事件发生(或者实验)n次中,在第x次取得成功的概率。其发生的概率P为:
P = ( 1 − p ) x − 1 × p P=(1-p)^{x-1} \times p P=(1p)x1×p
  期望 : E ( x ) = 1 p E(x)=\frac{1}{p} E(x)=p1; 方差: Var ⁡ ( x ) = 1 − p p 2 \operatorname{Var}(x)=\frac{1-p}{p^{2}} Var(x)=p21p

3、泊松分布

  日常生活中,大量事件是有固定频率的。

  • 某医院平均每小时出生3个婴儿
  • 某公司平均每10分钟接到1个电话
  • 某超市平均每天销售4包xx牌奶粉
  • 某网站平均每分钟有2次访问

  它们的特点就是,我们可以预估这些事件的总数,但是没法知道具体的发生时间
   泊松分布的数据或者事件特征:

  • 事件发生的次数与时间起点无关,只与时间长短有关。
  • 任何两个不重叠的时间区间,各自区间内事件发生的次数是相互独立的。
  • 在非常短的时间内,事件连续发生两次的概率接近零,不连续。

  已知平均每小时出生3个婴儿,请问下一个小时,会出生几个?有可能一下子出生6个,也有可能一个都不出生。这是我们没法知道的。

  泊松分布就是描述某段时间内,事件具体的发生概率。
P ( N ( t ) = n ) = ( λ t ) n e − λ t n ! P(N(t)=n)=\frac{(\lambda t)^{n} e^{-\lambda t}}{n !} P(N(t)=n)=n!(λt)neλt
  上面就是泊松分布的公式。等号的左边,P 表示概率,N表示某种函数关系,t 表示时间,n 表示数量,1小时内出生3个婴儿的概率,就表示为 P(N(1) = 3) 。等号的右边,λ 表示事件的频率。

  接下来两个小时,一个婴儿都不出生的概率是0.25%,基本不可能发生。
P ( N ( 2 ) = 0 ) = ( 3 × 2 ) 0 e − 3 × 2 0 ! ≈ 0.0025 P(N(2)=0)=\frac{(3 \times 2)^{0} e^{-3 \times 2}}{0 !} \approx 0.0025 P(N(2)=0)=0!(3×2)0e3×20.0025

  泊松过程的强度lambda (常数)等于单位长时间间隔内出现的质点数目的期望值。即对泊松分布有:E(X) = D(X) = λ
  泊松分布的特征

  1、Poisson分布主要用于描述在单位时间(空间)中稀有事件的发生数。要观察到这类事件,样本含量n必须很大。

  2、λ是泊松分布所依赖的唯一参数。λ值愈小,分布愈偏倚,随着λ的增大,分布趋于对称。

  3、当λ = 20时,分布泊松接近于正态分布;当λ = 50时,可以认为泊松分布呈正态分布。在实际工作中,当λ>=20 时就可以用正态分布来近似地处理泊松分布的问题

4、二项分布转化泊松分布,泊松转化正态分布

   lim ⁡ n → α , p → 0 C n k p k ( 1 − p ) n − k = lim ⁡ n → α , p → 0 n ( n − 1 ) ⋯ ( n 1 − k ) k ! p k ( 1 − p ) n − k \lim _{n \rightarrow \alpha, p \rightarrow 0} C_{n}^{k} p^{k}(1-p)^{n-k}=\lim _{n \rightarrow \alpha ,p \rightarrow 0} \frac{n(n-1) \cdots(n 1-k)}{k !} p^{k}(1-p)^{n-k} limnα,p0Cnkpk(1p)

  • 7
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值