2021-05-22

本文探讨了勾股定理的起源、中外数学家的不同证明方法,如赵爽、欧几里得、梅文鼎和刘徽,分析他们的优势与不足,揭示了勾股定理在数学史上的深远影响及实际应用。通过比较,展现了数形结合和几何变换在证明中的核心作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

勾股定理

摘要:勾股定理在西方被称作是毕达哥拉斯定理。公元前550年,古希腊数学家兼哲学家毕达哥拉斯首先发现的这一定理。随后,学术界有诸多数学家对该定理进行了大量的分析与验证,每一位学者通过不同的角度与方式进行分析验证,本课题主要是深层剖析与探究各种具有代表性的证明方法的优缺点,并深入了解勾股定理在数学中的应用,为解决抽象复杂的数学问题方面提供强有力的理论支撑。
关键词:勾股定理;证明;应用
1引言
三国时期的赵爽是我国首位证明勾股定理的数学家。世界上最早证明勾股定理的数学家是毕达哥拉斯,但他对勾股定理的证明方法现如今已经失传,古希腊数学家欧几里得是当今深受认可的一种证明方法。其中,梅文鼎、刘徽、加菲尔德的证明方法在数学研究领域中具有其自身显著的特征与优势。当今没有充分的证据全方位证实最先发现勾股定理的是西方还是中国。因此,通常认为是我国与西方国家在长期的学术研究中同时发现了勾股定理,但证明方式比较多样且均具有自身的验证特征。
1.1提出问题、选题的目的
本研究中,重点探究我国数学家与西方数学家关于勾股定理的证明方法及思路,并对几种典型的证明方法进行综合性对比,在此基础上验证每一种证明方法的优势与弊端,对勾股定理进行系统性的分析与论证。从总体层面进行分析,勾股定理实质上是数学史中一个重大的研究方向。无论是前辈还是当代的学者,都应当对勾股定理形成深刻的认知,不断完善该理论的内容和原理,尽力为数学史做出一定的贡献,为后续的研究提供强有力的理论支撑和参考依据。
经过综合性分析与研究,本课题选择的是勾股定理及证明思路,在研究中总结出勾股定理是数学史中一个重大发现和重要的数学思想,从古至今对数学教学和应用研究着中具有无法替代的意义。勾股定理强调的是,直角三角形的两条直角边的平方和与斜边的平方是相等的。中国古代将直角三角形称之为勾股形,以此为基础将直角边中较小者为勾,另一长直角边为股,斜边为弦。基于上述分析可知,将此定理在数学研究界中称为勾股定理,也有学者将此过程称为商高定理。
数学研究领域中现有证明勾股定理方法有500种,这实际上也是数学定理中证明方法最多的一种定理。勾股定理是人类早期就着手探究的一种具有重要性研究价值的数学定理,通过代数思想将几何问题系统性分析与解决,也是数形结合的桥梁和应用工具。
我国周朝时期的商高在研究中明确提出了“勾三股四弦五”的勾股定理的应用实例。西方最早提出及证明勾股定理的是,公元前6世纪古希腊的毕达哥拉斯学派,在研究与应用中通过演绎法对“直角三角形斜边平方等于两直角边平方之和”这一思想进行分析与验证。[1]
1.2西方科学家与中方科学家的证明方法
我国有赵爽、刘徽、梅文鼎等。西方国家有毕达哥拉斯、欧几里得、加菲尔德等。
2.赵爽的证明方法
为斜边的全等直角三角形,在此阶段中与以 为边长的小正方形,按照规范性的原则和要求拼成如图3呈现出的图形形状。一方面s正方形 另一方面s正方形 将以上两式综合性对比并可得 赵爽是数学史中最早证明勾股定理的中国古代数学家,其主要的贡献是大约在222年针对研究需求对《周髀算经》深层分析,为该书籍详细撰写了序言,并进行明确的分析及注释,其中有一段530多字的“勾股圆方图”,所对应的注文是数学研究史中具有价值性的文献资源。通过“勾股圆方图”综合性阐述勾股定理证明法及思路:“按弦图,并可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。” [2]

赵爽是我国第一位发现勾股定理的伟大数学家,研究意义在数学史中是十分重要的。爱因斯坦曾说过,发现问题比解决问题更重要,解决问题实际上仅仅是一种基本的思维方式,而发现问题才是一种具有重要性意义的创新精神。无论后面有多少的数学家将勾股定理结合实际进行调整与优化,但赵爽的地位是不可知质疑和替代的,在长期的实证分析与研究中为数学史做出了巨大的付出与贡献。
2.1缺陷
赵爽在当时的研究中,由于设备、器材等方面具有一定的局限性,所作出的证明方法与研究思路中存在一定的不足,但整体研究理念是令人敬佩的。
2.2意义
对中国数学史乃至世界数学史都具有重要的价值及意义,并在一定程度上大力驱动了数学史的发展进程,他序言的《周脾算经》在当今一直被诸多学者研读,且深受广大学者的认可与沉醉,从古至今他都是一位伟大的数学家。
3.欧几里得的证明方法
欧几里德在《几何原本》书籍中明确给出了勾股定理的证法。由于整个图形十分巧妙完美,有人将该图称作为“修士的头巾”,也有学者将其称之为“新娘的轿椅”,这种描述方式十分有趣且具有一定的研究意义。华罗庚教授曾在研究中建议,将该图发往宇宙与“外星人”并进行互动交流。接下来,引导学生分析欧几里德的证明方法与解题思路:在下图中作三个正方形,且边长分别是 的正方形,在此基础上将其拼成为如图所呈现的形状,此阶段中使 三点在此阶段中处于同一条直线上,并与 相连接。经过点 ,作 , 交 于点 ,交 于点 。因为 所以 可以看成是由 绕点 旋转而得到的。因为 的面积等于12a2 , 的面积等于长方形 的面积的一半,所以长方形 的面积为a2,同理可证,长方形 的面积为b2,长方形的面积为b2,正方形 的面积 长方形 的面积 长方形 面积,因此可以进行下述分析与表达 在此基础上推断出 [3]
该学者在证明与研究中的优点在于,证明思路更加的形象且便于理解,在欧几里得的研究中,勾股定理已更加完善且具展现出其自身的意义,他的证明在数学研究中广泛应用,相比赵爽的研究及证明思路更加直观简洁。
3.1意义
他的证明是数学研究史中第一次真正且具有重大研究意义的证明,并能够正式开启了勾股的大门,使每一位学者对勾股定理有一定程度的了解和认知,也是一种具有现实意义的证明。
4.梅文鼎的证明方法
梅文鼎针对几何问题在具体分析研究中明确指出:“以勾股释之则明,唯理分中末线似与勾股异源,今为游心于立法之初,而仍出于勾股,信古九章之义,包举无方。”(理分中末线强调的是,一线段按照规范性的原则进行划分,这就是数学研究史中的黄金分割)。换言之,勾股定理(毕氏定理)能够在实际中国将所有的几何问题全面解决。梅氏了将具体的理念与思路明确阐述,通过勾股定理证将《几何原本》中的命题进行详细的分析与在证实。此观点说数学史最早的原理。数学家们在19世纪末期对几何形成了全面的认知与理解。勾股定理在数学研究中是与欧氏平行公理完全等价的命题形式。也就是说,东西方研究的几何都是抛物型几何且具有不可替代的重要作用。前述勾股定理的证明是通过出入相补原理结合分析研究所获取的,而出入相补与合同公理是完全等同的,并证明一定默用了一个与平行公理等价的命题。在每一个利用出入相补原理的证明中,均以勾股为基础按照规范性的原则作正方形。换言之,先认可在任一线段中可针对实际需求作一正方形,而在拼补中又默认了直角三角形两锐角之和为一个直角。由于证明中的这些的是默认的,这也就是完全认可了欧氏平行公理是合理且成立的。原因在于它们与欧氏平行公理都是无安全等价的。勾股定理是在出入相补原理与正方形存在的基础上证明的(其中还涉及到其它相关的因素)这一点被《几何原本》逻辑地体现且发乎其真正的应用价值。 [4]
5.刘徽的证明方法
以勾股弦及其和较作为已知条件,结合实际情况对勾股形及其相关问题的勾股算术分析求解,该思想始见于《九章算术》,赵爽和刘徽加以补充和完善,增加“三和三较”(即 )。唐王孝通的《辑古算经》中增加了三种具有代表性意义的“相乘幂”表达形式 宋杨辉在《详解九章算法》中作“勾股生变十三名图”增加弦和和 弦和较 弦较较 弦较和 四项而便捷精准地获取到13项。明顾应祥、清梅文鼎对后增的四项综合性思考,其中包括勾股恒等式增至11个且具有不可替代的重要功效。1723年顺利实现的《数理精蕴》中的“勾股弦和较相求法(上) ”明确列出了60种具体的情形,项名达从中结合实际情况选取25种,按算法类似规范性地划分为“六术”,在此基础上分别给出相应的计算公式及详细的图解,并撰成《勾股六术》,将勾股算术的研究推到顶峰,至此又增勾股恒等式10个。1863年出版的吴嘉善的《算学初集十七种》以列表形式巧妙地总结了勾股恒等式。魏晋时期,著名数学家刘徽在为《九章算术》做批注过程中展现出自己的证明:“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也。合成弦方之幂”,几句简短的话语清晰地阐明勾股定理及应用意义。但比较可惜的是刘徽的证明图由于自身存在一定的弊端当前已完全失传。根据李迪在数学研究的证明可知,刘徽的证明方法与欧几里得在《几何原本》中的证明思想比较相似,而结合曲安京先生关于此方面的研究,下图是刘徽的勾股定理证明法及思想理念,其他学者对刘徽的证明思路与方法从不同的层面进行阐述的。[5]

6.梅文鼎与欧几里得证明的比较
公元3世纪三国时期的赵爽是我国数学发展史中最先实现勾股定理证明的数学家。赵爽为《周髀算经》 作注,历经长期的研究给出弦图和一名为“勾股圆方图说”的短文。该文首段对弦图进行明确地分析与说明,即“勾股各自乘,且之为弦实,开方除之即弦。”魏晋时期数学家刘徽在《九章算术注》中给出他的证明:“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也。合成弦方之幂。”两位学者在证明中均采用了出入相补原理,基本的思路是一个平面图形从一处移置其它位置,但面积在此过程中始终不变,例如将图形按照一定的原则分割为几块,则每一个部分面积之和与原先图形面积是相等的,清初数学家梅文鼎在《勾股举隅》中明确给出两种具有重要价值的证明方法,采用的仍是出入相补原理且发挥重要的作用。
上述两种方法均采用“图形全等则面积相等”的原理与思路。所不同的是,欧几里得方法还使用了“三角形面积等于同底等高矩形(正方形)面积的一半”这一原理,而梅文鼎并没有使用此原理。从几何变换的视角深层剖析,“图形全等则面积相等”则真正意义在于,图形经变换后全等且面积完全不变。但两位研究中在该原理应用时,梅文鼎采用的是平移变换的思想,欧几里得采用的旋转变( 绕C点 旋转到与重合,因此两者全等且面积完全相等)勾股定理的对文化内涵综合性分析与验证。中国古人(赵爽、刘徽、梅文鼎等人)在研究通过“出入相补”原理,并充分展现出直角三角形易于移补的特征,在此基础上推断出简洁明确的证法,相应的几何思想是图形按照一定的规律进行移、补、凑但面积恒定不变,充分体现出中国传统文化的实用性和价值性,并展示出割补原理与数形结合思想的文化理念,对于优秀传统文化的传承与弘扬起到熏陶的功效。
欧氏证法从另一个层面向学习者展现出西方数学文化传统的精髓,着重起到的是数学问题解答中缜密的思维和理性的推断。通常情况,我们在研究与思考中通常认为,以中国数学为代表的东方数学,与以古希腊数学为代表的西方数学,两者在数学研究史是哪个采用的是不同的思想及路线,每一种方法都有其自身的风格与特色。
然而,在运用“几何变换”思想将两种文化中的勾股定理证明方法进行重新审视的基础上,我们能够直观地判定出它们之间的共性及重要意义。这种共性有利于在解题中通过专业科学的思维方式将其他民族的思维方式有效同化,便于理解与应用文化传统。在上文的深入比较和研究中发现,上述两种方法之间有一定的共同点,通过“变换”的思想方法进一步探究。数学思想方法是数学研究领域的核心与关键,引导学生对数学文化与思想进行深入理解、欣赏及感悟。
7.勾股定理的应用及问题的解决
勾股定理的应用在数学发展史中具有不可替代的重要意义,其中涉及到丰富的数学文化和人文素养,对于学习者的成长与发展、科技意识的形成等,起到积极的促进作用。本研究以单元教学为切入点,为勾股定理专门设计了一系列具有针对性的学习活动。主要体现在六个方面:勾股定理的数学发展史、勾股定理数学家的思想研究、勾股定理的证明方法、勾股定理及其定理的应用案例、勾股定理易错题的梳理、勾股定理的应用及推广。本单元的设计实际上是以数学史为着手点,将勾股定理在日常中的显著成果收尾,让学生在研究与思考勾股定理的研究中,丰充分体现出整个学习过程中的真正意义。[7]
解决问题,勾股定理是各省市中考的必考内容。若要深入领会和灵活运用勾股定理,首先要对图形特征综合性分析,在此阶段中明确线段之间的管关联性,再将条件与同一个直角三角形相结合,最后通过勾股定理的方法与思路求解。
例如:在 中,已知 , ,垂足为D, 若E是 的中点,则 [8]
勾股定理是人们日常中分析与解决问题的综合性结果。“七巧板”的设计,实际上就是通过勾股定理的原则,引导学生从已有的活动中自主地发现与分析问题,在此基础上结合实际情况采取正确的思路进行解题,培养学生养成良好的数学思维和素养。等腰直角三角形属于一种特殊的直角三角形,较为容易分析并能够得出结论,在此基础上教师科学地引导学生针对实际情况提出新的问题,在此基础上进行一般化的分析与研究。[9]
数形结合思想能够将繁杂难懂的概念或数量关系,通过图形的方式直观的呈现。在课前导入环节体现出数形结合的思想,在多媒体技术的支撑下是复杂问题直观呈现。教师可以利用多媒体大屏将毕达哥拉斯定理相关的图片进行展示,使得广大学生对图片中的正方形之间的面积关系及正方形与三角形三边相关的数量关系进行观察分析,学生在这种情况下将所有的思维集中于图形中。
随后,教师利用多媒体将一则小视频进行播放并向学生讲述毕达哥拉斯的故事,学生在视频中发现,毕达哥拉斯是在朋友家的地砖上发现直角三角形中各边有一定的数量关系,通过视频引导学习者在头脑中建构形与数之间的关系,此时能够使得学生们通过多媒体的回放功能在此观察图片,学生通过数量关系对正方形之间的面积关系进行分析验证,科学的引导学生使用割补法构建小正方形与大正方形两者之间的面积关系的算式,以此为基础建立数与形之间的关联性,实现数形结合思想进行解题的分析与应用。
将数形结合思想渗入于数形互变中,使学生通过课前导入环节对数形结合思想形成初步的认知,对等腰直角三角形三边之间的关系进行简单地理解,以此进行相应的数形互变。教师针对新课标要求为学生创设一个全新的情境,将上述图片中的等腰直角三角形科学地换为普通的直角三角形,这种情况下会出现什么情况?教师此时在屏幕中利用技术手段将三个正方形的位置进行打散并重编,将其变成一个新的直角三角形并直观呈现,要求学生在此时通过割补法对此直角三角形三边之间的关系再次证明,通过分析与验证推出具体的勾股定理的计算公式。在这种新情境中分析与思考,全方位展现出学生在课堂中的主体地位,促使学生自主的分析并综合性验证新的知识,并深入理解“数”与“形”互换解决实际问题的重要理念,将数形结合的思维应用于实际问题解答中,有助于学生思考能力和数学素养的提升。
通过习题法进一步强化数形结合思想理念,数学是一门非常注重练习的一门课程,在课堂中将勾股定理与随堂习题的讲解相融合。通常,勾股定理主要考查的是综合应用题。这类题型在讲练时就一定科学地引导广大学习者,通过数形结合的方式来解答实际问题:公园中的树被雷劈倒,劈倒部位与地面相距12m,树顶倒地的位置与树根之间的距离为16m,求解树本身的多高?此类题目求解的过程中,第一步是思路是精确地提取出题干中的数量关系提取出来,根据数量关系绘制草图,通过草图学生可以很快发现树被劈倒的位置到树根的位置、树顶倒地位置到树根的位置、原树顶到树根的位置这三条线正好可以围成一个直角三角形,运用勾股定理就能很快得出问题的解,学生在求解的过程中灵活地应用图形结合的思想,强化学生对知识的理解与应用。[10]
勾股定理看似较为简单且易于理解,但吸引了诸多数学家和学术界的研究者,甚至一些普通百姓也从不同的层面对该定理进行分析与论证。至今为止,勾股定理的证明方法共计500多种,对勾股定理在数学领域中的意义进行系统性的验证,该定了在实际生活中也具有极高的应用价值。首先,勾股定理对数学思维具有深远的意义,该定了的论证实质上也是数字与图形之间按照一定的规律进行结合。其次,勾股定理具有不可替代的作用,通过该定理将直角三角形、相关定理的变式应用等方面有效解决。除了上述提及到的推广公式及相关定理,勾股定理在数学问题的分析与解答中也具有深远的意义和研究价值,有利于解决中学数学中诸多的难题,如辅助解决线段长度问题和动点坐标问题。近些年,勾股到定理是高考数学中重要考点,深入理解与领会勾股定理,对于解题中提高几何问题的分数具有直接的促进作用。[11]

[1]潘瑞.基于数学命题教学下的勾股定理教学设计研究[D].四川师范大学,2014.
[2]张冬莉.人教版中学数学教科书中勾股定理内容设置演变之研究[D].内蒙古师范大学,2017.
[3]赖文娟.HPM视角下勾股定理的教学设计研究[D].赣南师范大学,2016.
[4]刘燕.基于教学内容分析的数学拓展课程研究[D].杭州师范大学,2017.
[5]周丹莹.基于多元表征理论的勾股定理系列微课设计研究[D].广西师范大学,2019.
[6]傅建奇.基于教材比较下的“勾股定理”教学研究[D].杭州师范大学,2019.
[7]马梦阳.勾股定理的证明与推广应用[D].西北大学,2014.
[8]周红艳.关于勾股定理与毕达哥拉斯定理发现的比较研究[D].华中科技大学,2009.
[9]陈洪鹏.勾股定理研究[D].辽宁师范大学,2011.
[10]金荣.初中数学变式教学应用研究[D].内蒙古师范大学,2017.
[11]刘兴华.初中数学教学中数学史应用开发研究[D].首都师范大学,2009.
[12]李超.勾股定理最早证明新考[J].韶关学院学报(社会科学),2006,10:1-4.
[13]周红艳,成良斌.论古代科学发现优先权的确立原则与判定标准——以勾股定理与毕达哥拉斯定理的发现为例[J].自然辩证法研究,2010,2601:98-103.
[14]张冬莉,代钦.毕达哥拉斯定理证明2500年的文化史趣谈——以E.S.Loomis的《PythagoreanProposition》为例[J].数学通报,2020,5902:10-15.
[15]张冬莉,代钦.清末中学几何教科书中“勾股定理”的演变研究[J].数学教育学报,2020,2903:79-85.
[16]廉开波,廉锋.数学文化视野下的勾股定理[J].科教导刊(中旬刊),2018,32:22-24.
[17]丁子星,代钦.勾股定理在中国数学课堂中的体现——对数学文化的重新认识[J].内蒙古师范大学学报(教育科学版),2018,3111:57-64.
[18]刘凯,韩龙淑.三套初中数学教材“勾股定理”内容的比较研究[J].内江师范学院学报,2019,3404:27-33.
[19]王阳.论勾股定理发现优先权标准[J].科学经济社会,2013,3101:36-40+44.
[20]董涛.课堂教学中的PCK研究[D].华东师范大学,2008.

Pythagorean theorem

Abstract: Pythagoras theorem is known in the west, and it is said that Pythagoras, a mathematician and philosopher in ancient Greece, first discovered it in 550 BC. Since then, countless,mathematicians have proved this theorem in various ways. Each of them has different,ways,of proving. Today, I want to discuss the advantages and disadvantages of their proof methods and how to prove them. I want to understand the application of Pythagorean theorem in mathematics and solve our complex mathematical problems.
Key words: pythagorean theorem; proof; mathematician; application; solving mathematical problems;

内容概要:本文档是一份计算机软考初级程序员的经典面试题汇编,涵盖了面向对象编程的四大特征(抽象、继承、封装、多态),并详细探讨了Java编程中的诸多核心概念,如基本数据类型与引用类型的区别、String和StringBuffer的差异、异常处理机制、Servlet的生命周期及其与CGI的区别、集合框架中ArrayList、Vector和LinkedList的特性对比、EJB的实现技术及其不同Bean类型的区别、Collection和Collections的差异、final、finally和finalize的作用、线程同步与异步的区别、抽象类和接口的区别、垃圾回收机制、JSP和Servlet的工作原理及其异同等。此外,还介绍了WebLogic服务器的相关配置、EJB的激活机制、J2EE平台的构成和服务、常见的设计模式(如工厂模式)、Web容器和EJB容器的功能、JNDI、JMS、JTA等J2EE核心技术的概念。 适合人群:正在备考计算机软考初级程序员的考生,或希望加深对Java编程及Web开发理解的初、中级开发人员。 使用场景及目标:①帮助考生系统复习Java编程语言的基础知识和高级特性;②为实际项目开发提供理论指导,提升编程技能;③为面试准备提供参考,帮助求职者更好地应对技术面试。 其他说明:文档不仅涉及Java编程语言的核心知识点,还包括了Web开发、企业级应用开发等方面的技术要点,旨在全面提高读者的专业素养和技术水平。文档内容详实,适合有一定编程基础的学习者深入学习和研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值