NTS-Net

ECCV2018细粒度分类paper:Learning to Navigate for Fine-grained Classification
作者无私的将代码公布了出来,源码基于pytorch。
项目地址:https://github.com/yangze0930/NTS-Net
在自己设备上复现时,鸟类数据集能够达到论文中的效果,但是汽车数据集的accuracy只有90.3%,和论文中描述的93.9%还是有些差距的。

本篇博客主要从论文原理对NTS-Net进行解读。

参考链接:https://blog.csdn.net/qq_16525279/article/details/82595285

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
实际上,在代码中,anchor并不是如论文中所描述的3个尺度3种比例,还加入了边框的缩放比例。代码解读部分会提到。

在这里插入图片描述Condition是该论文中自监督方法的核心。
通过使得所用NMS选出的前M个区域的信息量和置信度的排序一致,实现自监督的目的。
在这里插入图片描述

评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值