细粒度分类:NTS-Net论文笔记——Learning to Navigate for Fine-grained Classification

本文深入解析了NTS-Net论文,该方法针对细粒度分类,通过自监督机制优化信息区域定位。文章介绍了网络结构中的Navigator、Teacher和Scrutinizer模块,以及排序损失和强化学习的关联。实验表明,这种方法能有效提升细粒度分类的准确性,无需额外的边界框标注。
摘要由CSDN通过智能技术生成

细粒度分类:NTS-Net论文笔记——Learning to Navigate for Fine-grained Classification

综述

论文题目:《Learning to Navigate for Fine-grained Classification》
会议时间:European Conference on Computer Vision 2018 (ECCV, 2018)

论文地址:https://openaccess.thecvf.com/content_ECCV_2018/papers/Ze_Yang_Learning_to_Navigate_ECCV_2018_paper.pdf

源码地址(PyTorch版本):https://github.com/yangze0930/NTS-Net

针对领域:细粒度图像分类(FGVC)

关键词:细粒度分类、导航学习、区域检测

源码笔记:https://

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉萌新、

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值