文献学习_Missing Link Prediction using Common Neighbor and Centrality based Parameterized Algorithm

题目

Missing Link Prediction  using Common Neighbor and Centrality based Parameterized Algorithm

作者

Iftikhar Ahmad 1*, Muhammad Usman Akhtar1, Salma Noor2 & Ambreen Shahnaz2

-1Department of Computer Science and Information Technology, University of Engineering and Technology, Peshawar, Pakistan.
-2Department of Computer Science, Shaheed Benazir Bhutto Woman University, Peshawar,
Pakistan.
*email: ia@uetpeshawar.edu.pk

摘要

在这里插入图片描述

方法

相似性度量(共同邻居+closeness)
在这里插入图片描述
在这里插入图片描述

实验

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

以下是与“Prediction and risk assessment of extreme weather events based on gumbel copula function”类似的文献推荐: 1. "Multivariate Extreme Value Theory for Risk Assessment" by Alexander McNeil, Rüdiger Frey, and Paul Embrechts. This book provides a comprehensive overview of multivariate extreme value theory and its applications to risk assessment, including the use of copulas. 2. "Spatial dependence in extreme precipitation: A copula-based approach" by Claudia Tebaldi, Michael B. McElroy, and Laurent A. Bouwer. This paper discusses the use of copulas to model the spatial dependence of extreme precipitation events, and demonstrates the usefulness of this approach for risk assessment and prediction. 3. "A comparison of copula-based and traditional frequency analysis methods for extreme rainfall estimation" by Jian Liu, Hong Guan, and Xiaoguang Wang. This paper compares the performance of copula-based and traditional frequency analysis methods for extreme rainfall estimation, and provides insights into the strengths and weaknesses of each approach. 4. "Copula-based approach to modeling extreme wind speeds and gusts" by Xing Yu and Lulu Liu. This paper presents a copula-based approach for modeling extreme wind speeds and gusts, and shows how this approach can be used for risk assessment and prediction. 5. "Estimating the probability of extreme floods using copula-based bivariate frequency analysis" by Tae-Young Kim and Seungho Lee. This paper proposes a copula-based bivariate frequency analysis method for estimating the probability of extreme floods, and demonstrates its effectiveness using real-world data.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值