【YOLOv8改进】骨干网络: SwinTransformer (基于位移窗口的层次化视觉变换器)(论文笔记+引入代码)

本文详细介绍了SwinTransformer,一种用于视觉任务的高效Transformer模型,其通过移位窗口自注意力实现线性复杂度,并在目标检测等任务上展现优越性能。文章涵盖Swin Transformer的基本原理,包括层次化特征图、块合并和移位窗口注意力机制,以及在YOLOv8中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv8目标检测创新改进与实战案例专栏

专栏目录: YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLOv8基础解析+创新改进+实战案例

介绍

image-20240126102941733

摘要

本文提出了一种新型视觉Transformer,称为Swin Transformer,它能够作为计算机视觉的通用骨干网络。将Transformer从语言领域适应到视觉领域时面临的挑战源于两个领域之间的差异,例如视觉实体的尺度变化大以及图像中像素的高分辨率相比文本中的单词。为了解决这些差异,我们提出了一种分层Transformer,其表示是通过移位窗口计算得出的。移位窗口方案通过将自注意力计算限制在非重叠的局部窗口内,同时也允许跨窗口连接,从而带来更高的效率。这种分层架构具有在不同尺度上建模的灵活性,并且其计算复杂度与图像大小呈线性关系。Swin Transformer的这些特性使其与广泛的视觉任务兼容,包括图像分类(在ImageNet-1K上的top-1准确率为87.3)和密集预测任务,如目标检测(在COCO test-dev上的框准确率为58.7,掩码准确率为51.1)以及语义分割(在ADE20K val上的mIoU为53.5)。其性能大幅超越了之前的最佳水平,在COCO上框准确率提高了+2.7,在掩码准确率提高了+2.6,在ADE20KmIoU提高了+3.2,展示了基于Transformer模型作为视觉骨干网络的潜力。分层设计和移位窗口方法也证明对所有MLP架构都有益。

创新点

  1. 引入类似于CNN的层次化构建方式构建Transformer模型;

  2. 引入locality思想,对无重合的window区域进行单独的self-attention计算。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

Swin Transformer(Liu et al., 2021)是一种基于 Transformer 的深度学习模型,在视觉任务中具有最先进的性能。与之前的 Vision Transformer (ViT) (Dosovitskiy et al., 2020) 不同,Swin Transformer 效率高且精度更高。由于这些理想的特性,Swin Transformers 被用作当今许多基于视觉的模型架构的骨干。

Swin Transformer引入了两个关键概念来解决原始ViT(视觉变换器)所面临的问题——层次化特征图和移位窗口注意力机制。实际上,Swin Transformer的名称来源于“移位窗口变换器”。Swin Transformer的整体架构如下所示。

请注意,在论文中,第一个块使用了“块划分”(patch partition)。为了简化,这个图中将第一个块标为“块合并”(patch merging),因为它们的操作是相似的。

如我们所见,“块合并”(Patch Merging)模块和“Swin Transformer模块”是Swin Transformer中的两个关键构建块。

### 关于Swin Transformer与GRU结合的信息 #### Swin Transformer简介 Swin Transformer通过引入窗口注意力机制、分层结构和补丁合并层等创新设计,解决了许多视觉任务中的挑战,在保持计算效率的同时显著提升了模型性能[^2]。 #### GRU简介 门控循环单元(Gated Recurrent Unit, GRU)是一种简化版的LSTM网络,能够有效缓解长期依赖问题并减少参数量。GRU在网络中主要用于处理序列数据,具有良好的记忆特性。 #### 结合方式探讨 当考虑将Swin Transformer与GRU相结合时,可以利用两者的优势互补: - **特征提取阶段**:使用Swin Transformer作为骨干网来捕捉输入图像的空间特征; - **时间维度建模**:对于视频或其他连续帧的数据集,可以在每一帧上应用Swin Transformer获取空间特征后,再送入GRU模块进行时间维度上的关联分析; 这种组合能够在保留局部细节的基础上更好地理解全局上下文关系,并且适用于多种计算机视觉任务如动作识别、行为检测等领域。 ```python import torch.nn as nn from timm.models import create_model class SwinGRUNet(nn.Module): def __init__(self, num_classes=1000): super(SwinGRUNet, self).__init__() # 创建预训练好的Swin Transformer实例 self.swin_transformer = create_model('swin_base_patch4_window7_224', pretrained=True) # 冻结部分或全部Swin Transformer权重 for param in self.swin_transformer.parameters(): param.requires_grad_(False) hidden_size = 512 # 添加GRU层用于处理序列化后的特征向量 self.gru = nn.GRU(input_size=self.swin_transformer.num_features, hidden_size=hidden_size, batch_first=True) # 输出分类 self.fc_out = nn.Linear(hidden_size, num_classes) def forward(self, x): b, t, c, h, w = x.size() # (batch_size, time_steps, channels, height, width) inputs = x.view(-1, c, h, w) # 将所有帧展平成单张图片形式传给Swin Transformer features = self.swin_transformer.forward_features(inputs).view(b, t, -1) # 提取每帧特征并将它们重新组织回原始形状 outputs, _ = self.gru(features) # 序列化特征经过GRU得到最终输出 out = self.fc_out(outputs[:, -1]) # 取最后一个时刻的状态做预测 return out ``` 此代码片段展示了如何创建一个融合了Swin Transformer 和 GRU 的神经网络架构。该模型首先会用Swin Transformer 对每个单独的时间步长内的图像执行特征提取操作,之后这些特征会被传递到GRU 层来进行更高级别的模式识别工作。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值