CNN模型(1):LeNet

这次介绍LeNet:

https://blog.csdn.net/silent56_th/article/details/53456522

3个卷积+2个池化+2个全连接,参数个数:

层次

描述

参数个数与连接数

作用

INPUT

32*32的灰度图

0

 

 

卷积层1

由6个5*5*1卷积核与输入层做卷积操作产生的6个28*28的Feature Map(FM).

参数:(5*5+1)*6

连接:(5*5*1+1)*6*28*28

 

对输入图像提取6个特征

 

池化层1

对C1层的每一个Feature Map的长宽尺寸降到原来的1/2,得到6个14*14的FM通道数量不变。

参数:2*6

连接:(2*2+1)*6*(14*14)

降低网络训练参数及模型的过拟合程度。常用的由最大池化和平均池化。

 

 

 

卷积层2

有16个FM,由四组卷积核,分别为6个5*5*3,7个5*5*4,2个5*5*5,1个5*5*6。得到16个10*10的FM,每一个FM是由上一层的各FM的不同组合得到,组合情况详见下表。

参数:(5*5*3+1)*6+(5*5*4+1)*7+(5*5*5+1)*2+(5*5*6+1)*1

连接:((5*5*3+1)*6+(5*5*4+1)*7+(5*5*5+1)*2+(5*5*6+1)*1)*(10*10)

提取深层特征

池化层2

对C2的FM进行池化,降低每一个FM的大小为原来的1/2,得到16个5*5的FM.

参数:2*16

连接:(2*2+1)*16*(5*5)

降低网络训练参数及模型的过拟合程度。常用的由最大池化和平均池化。

卷积层3

由120个5*5*16的卷积核与S4层卷积,得到120个1*1的FM

参数:(5*5*16+1)*120

连接:(5*5*16+1)*120*(1*1)

提取深层特征

全连接层1

84个神经元与C5中的120个神经元全连接,加上4个偏置项。

参数:(120+1)*84

连接:(120+1)*84

 

全连接层2 

10个神经元与上一层的84个神经元全连接,加上10个偏置项。采用径向基函数(详解看另一篇文章)

参数:(84+1)*10

连接:(84+1)*10

训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值