这次介绍LeNet:
https://blog.csdn.net/silent56_th/article/details/53456522
3个卷积+2个池化+2个全连接,参数个数:
层次 | 描述 | 参数个数与连接数 | 作用 |
INPUT | 32*32的灰度图 | 0 |
|
卷积层1 | 由6个5*5*1卷积核与输入层做卷积操作产生的6个28*28的Feature Map(FM). | 参数:(5*5+1)*6 连接:(5*5*1+1)*6*28*28 |
对输入图像提取6个特征 |
池化层1 | 对C1层的每一个Feature Map的长宽尺寸降到原来的1/2,得到6个14*14的FM通道数量不变。 | 参数:2*6 连接:(2*2+1)*6*(14*14) | 降低网络训练参数及模型的过拟合程度。常用的由最大池化和平均池化。 |
卷积层2 | 有16个FM,由四组卷积核,分别为6个5*5*3,7个5*5*4,2个5*5*5,1个5*5*6。得到16个10*10的FM,每一个FM是由上一层的各FM的不同组合得到,组合情况详见下表。 | 参数:(5*5*3+1)*6+(5*5*4+1)*7+(5*5*5+1)*2+(5*5*6+1)*1 连接:((5*5*3+1)*6+(5*5*4+1)*7+(5*5*5+1)*2+(5*5*6+1)*1)*(10*10) | 提取深层特征 |
池化层2 | 对C2的FM进行池化,降低每一个FM的大小为原来的1/2,得到16个5*5的FM. | 参数:2*16 连接:(2*2+1)*16*(5*5) | 降低网络训练参数及模型的过拟合程度。常用的由最大池化和平均池化。 |
卷积层3 | 由120个5*5*16的卷积核与S4层卷积,得到120个1*1的FM | 参数:(5*5*16+1)*120 连接:(5*5*16+1)*120*(1*1) | 提取深层特征 |
全连接层1 | 84个神经元与C5中的120个神经元全连接,加上4个偏置项。 | 参数:(120+1)*84 连接:(120+1)*84 |
|
全连接层2 | 10个神经元与上一层的84个神经元全连接,加上10个偏置项。采用径向基函数(详解看另一篇文章) | 参数:(84+1)*10 连接:(84+1)*10 | 训练 |