百面机器学习(10)循环神经网络RNN

目录

01 循环神经网络和卷积神经网络

02 RNN的梯度消失问题

03 RNN中的激活函数

04 长短期记忆网络

05 Seq2Seq模型

06 注意力机制


RNN很多领域:机器翻译、序列标注、图像描述、推荐系统、智能聊天机器人、自动作词作曲等

01 循环神经网络和卷积神经网络

(1)处理文本数据时,RNN与前馈神经网络相比有什么不同?
 

02 RNN的梯度消失问题

RNN为什么会出现梯度消失?有什么改进方法?
 

03 RNN中的激活函数

ReLU

 

04 长短期记忆网络

(1)LSTM如何实现长短期记忆功能?

(2)LSTM各模块激活函数

 

05 Seq2Seq模型

(1)什么是Seq2Seq模型?优缺点?
(2)Seq2Seq模型解码时,常用方法

 

06 注意力机制

Seq2Seq模型进入注意力机制的原因?为什么选用双向RNN?

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值