流体力学——流体微团的运动形式与无旋运动的速度势

概念:

它是由许多流体质点组成的微小流体团,这个微团不仅包含了流体速度、密度、压力等物理量,而且还具有一定的外形。

流体的速度散度表示流体体积变化率:

                                    \bigtriangledown \cdot V =(\frac{\partial }{\partial x},\frac{\partial }{\partial y},\frac{\partial }{\partial z}) \cdot(u,v,w)=\frac{\partial u }{\partial x}+\frac{\partial v }{\partial y}+\frac{\partial w }{\partial z}

                                                 \bigtriangledown \cdot V > 0:表示该流体微团不断有流体流出,称为(source)

                                                 \bigtriangledown \cdot V < 0:表示该流体微团不断吸收流体,称为(sink)

                                                 \bigtriangledown \cdot V= 0:表示不可压缩流体的速度场是一个无源场

流体微团的运动形式:

Helmholtz速度分解定理:流体微团的运动速度可以分解为四部分:即(1)平移运动;(2)旋转运动;(3)线变形运动;(4)角变形运动。

                               V=V_{0}+E\cdot \delta r+\omega \times \delta r

                               \delta r=dxi+dyj+dzk

变形率(张量)

                              E=e_{ij}=\frac{1}{2}(\frac{\partial u_{i}}{x_{j}}+\frac{\partial u_{j}}{x_{i}})

旋转速度(矢量):

                               \omega =\omega _{x}i+\omega _{y}j+\omega _{z}k=\frac{1}{2}\Omega  

无旋运动的速度势

根据流体微团旋转角速度\omega或涡量\Omega是否为零,可以将流体运动分为有旋运动或无旋运动。

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值