流体力学——漩涡运动

有旋运动:

流体微团在旋转加速度作用下带漩涡的一种运动。

漩涡运动的基本概念

涡量用来描述流体微团的旋转运动。

定义:涡量和两倍的旋转角速度。

涡量是一个矢量,表示空间点的坐标和时间上的函数。

涡线:某一瞬时涡量场的一条曲线,曲线上任意一点的切线方向与该点流体微团的旋转角速度方向一致。

涡管:某一瞬时,在涡量场中取任意封闭曲线,通过曲线每一点做涡线,这些涡线构成的封闭的管形曲面叫涡管。

漩涡强度,也称涡通量:在微元涡管中,两倍旋转角速度与涡管断面面积的乘积称为微元涡管的涡通量(漩涡强度)。

dJ=\Omega \cdot dA=2\omega _{n}dA

J=\int \int _{A}\Omega \cdot dA=2\int \int _{A}\omega _{n} \cdot dA

速度环量:在流场的某封闭周线上,流体速度矢量沿周线的线积分,定义为速度环量\Gamma

斯托克斯Stokes定理:在涡量场中,沿任意封闭周线的速度环量等于通过该周线所包围曲面面积的漩涡强度,即:

\Gamma =\oint V\cdot dl=\int \int _{A}(\bigtriangledown \times v)\cdot dA=\int \int _{A}\Omega \cdot dA=2\int \int _{A}\omega _{n} \cdot dA=J

 漩涡强度的空间特性和时间特性

漩涡强度的空间特性:由矢量公式,知道涡量的散度为0:

\bigtriangledown \cdot \Omega =\bigtriangledown \cdot (\bigtriangledown \times V)=0

因此,通过任一封闭曲面的涡通量为0:

\oint \oint _{S} \Omega\cdot dA =\int \int \int _{V}\bigtriangledown \cdot (\bigtriangledown \times V)dV=0

漩涡强度的时间特性:沿任一封闭物质线的速度环量在运动过程中恒定不变(Kelivin定理)。

涡量的动力学方程

\frac{\partial \vec{\Omega} }{\partial x}+(\vec{V}\cdot \bigtriangledown )\vec{\Omega }-(\vec{\Omega }\cdot \bigtriangledown )\vec{V}+\vec{\Omega} (\bigtriangledown \cdot \vec{V})=0

\frac{D\vec{\Omega} }{Dt}=(\vec{\Omega }\cdot \bigtriangledown )\vec{V}-\vec{\Omega} (\bigtriangledown \cdot \vec{V})

这就是体积力有势流体正压理想流体的涡量动力学方程,也称为Helmholtz方程。

散度场和涡量场

对于一个静止的流体,要运动起来,要么流场中存在源/汇(散度不为0),要么流场中存在旋涡(涡量不为0),因此源汇和漩涡是诱导流体流动的两个因素。从数学角度:如果流场中存在速度场和涡量场就可以确定流体的运动速度场V。

### Flow3D大模拟(LES)设置与应用实例 #### 一、Flow3D中的LES简介 在计算流体力学(CFD)领域,大模拟(Large Eddy Simulation, LES)是一种用于捕捉较大尺度湍流结构的方法。相比于雷诺平均Navier-Stokes (RANS),LES能够更精确地预测瞬态流动行为,尤其适用于复杂几何形状下的高精度仿真需求[^1]。 #### 二、LES基本原理 LES的核心在于过滤方程,在此过程中只求解大于网格尺寸的大尺度运动,而较小尺度则通过亚格子模型(subgrid-scale model)加以处理。这种策略使得LES可以更好地反映实际物理现象,同时也增加了数值计算的成本难度[^2]。 #### 三、Flow3D中启用LES模式 为了在Flow3D里执行LES分析,用户需要调整如下参数: - **选择合适的湍流模型**:进入`Turbulence Model`选项卡,挑选适合项目特点的LES方案,比如Smagorinsky-Lilly SGS模型或其他高级形式。 - **定义滤波器宽度Δ**: 这决定了哪些规模以上的漩涡会被直接解析出来;通常情况下,默认值已经足够好用,但对于特定应用场景可能还需要进一步优化配置。 - **时间步长控制**:由于LES本质上是一个瞬态过程,因此合理设定dt对于获得稳定可靠的解决方案至关重要。建议从小的时间增开始尝试,并逐步增加直到达到平衡状态为止。 ```matlab % 设置LES相关参数示例代码片段 model.turbulenceModel = 'les'; % 启动LES功能 model.filterWidthDelta = 0.1; % 设定滤波器宽度 model.timeStepSize = 0.001; % 初始时间步长大小 ``` #### 四、案例研究——水坝溃决引起的洪水传播 假设要模拟一座小型水库突然崩溃后的水流扩散情况,此时采用LES方法能有效提高结果的真实性。具体操作步骤包括但不限于导入CAD文件建立流域边界条件、指定入口出口位置以及施加初始液位高度等基本信息之后再开启上述提到的各项LES专属属性即可开展仿真实验工作了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值